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Abstract: We examine the transmission of lifespan across generations in the US using a unique 
dataset containing more than 26 million individuals born between 1880 and 1920. On average, 47 
percent of men and 57 percent of women lived longer than their parents, though this varied across 
cohorts and socio-economic groups. The intergenerational persistence in lifespan is low across 
cohorts and socio-economic groups, and it is much smaller than persistence in socio-economic 
status. Moreover, persistence in lifespan and in socio-economic status are independent of each 
other. Lifetime well-being, which combines socioeconomic and lifespan measures, is less 
persistent than socio-economic measures suggest.  
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I. Introduction 

A large literature in economics has documented substantial persistence in economic well-

being across generations based on outcomes such as education, income, and wealth (Black and 

Devereux, 2011; Stuhler 2018). However, if we ultimately care about intergenerational persistence 

in well-being, looking at socioeconomic status alone may be insufficient. Lifespan is a key 

component of lifetime well-being: all else equal, lifetime well-being is greater when individuals 

live longer.  Previous research has found that individuals value increases in lifespan highly (Jones 

and Klenow, 2016; Becker, Philipson, and Soares 2005). Given that, ultimately, it is the 

intergenerational transmission in well-being that we care about, understanding the 

intergenerational persistence in lifespan, and how it relates to the economic components of well-

being, is fundamental. While we know that there is considerable and rising cross-sectional 

inequality in and lifespan – with richer, more educated individuals living substantially longer lives 

in the US and most other developed countries (e.g. Cutler et al. 2011, Marmot 2015) – it is less 

well-known how much these differences are transmitted from parents to children, despite the fact 

that lifespan is an essential determinant of well-being.  

We use a newly compiled dataset to study the transmission of lifespan across generations, 

its relation to SES, and its effect on the persistence of well-being. We combine United States 

Census records with data from the wiki-style Family Tree created by FamilySearch, which 

includes over 1.4 billion people and is the largest collection of its kind. We start with all individuals 

observed in the 1900, 1910, and 1920 decennial Censuses who were born between 1880 and 1920. 

We then match these individuals to the FamilySearch database to gather information about their 

lifespan and the lifespan of their family members, focusing on individuals who survive to at least 

age 25. Our final sample includes 26.1 million individuals matched to their parents and siblings. 

This is the largest sample ever constructed to study the intergenerational transmission of lifespan; 

it includes more than 30% of the US population born between 1880 and 1920 who survived to age 

25.  

We use these data to document a new series of facts about lifespan transmission in the US. 

We first generate a simple model to provide insight into the determinants and persistence of 

lifespan across generations.  Then, we examine both absolute and relative mobility to provide a 

comprehensive picture of intergenerational mobility in lifespan across cohorts and for different 

sub-populations. Absolute mobility refers to whether children live longer than their parents, 
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whereas relative mobility refers to whether parents who live longer than the average in their cohort 

will have children who live longer than the average in their cohort. During the late 19th century 

and the first half of the 20th century, incomes, educational attainment, and life expectancy were all 

rising rapidly. Yet this was also a period of rising inequality and great economic and political 

instability. Previous work has shown that, despite these tremendous changes, economic mobility 

across generations for these cohorts was low and remained stable (Song et al. 2020, Buckles et al. 

2023, Ward 2023). We evaluate whether lifespan mobility was similarly low and whether it 

followed the same trends.  

Then, to better understand how lifespan mobility and economic mobility are related, we 

conduct two analyses.  First, we compare the transmission of occupation-based income to that of 

lifespan for men born 1880 to 1920. Second, we look at correlations between siblings by 

constructing a subsample of siblings alive in 1940 for whom we can observe education, income, 

and occupation in addition to lifespan. In our simple model, if the environment and SES siblings 

share is more similar than the environment and SES that parents and children share, then sibling-

sibling correlations serve as an upper bound on the parent-child correlations. We also investigate 

how these parent-child and sibling-sibling correlations, in lifespan and socioeconomic status, are 

related across cohorts and space. We end by combining lifespan and SES measures into a lifetime 

utility measure to study the intergenerational transmission of well-being.  

We find that mobility in lifespan is high, no matter how you measure it, although different 

measures – particularly when comparing absolute versus relative mobility – result in different 

patterns across sex and across cohorts, with relative mobility exhibiting much less variation than 

absolute mobility measures. Our persistence estimates are consistently low across different 

subgroups, including sex, race/ethnicity, immigration status, place of birth, education, and family 

types. In contrast, we find that persistence in SES is high in our data. Intergenerational persistence 

in occupation-based income percentiles hover around ~0.35, compared to persistence of ~0.1 for 

lifespan. Among siblings, correlations in education (~0.5) are higher than correlations in income 

(~0.3), and correlations in income are higher than correlations in lifespan (~0.15). These results 

suggest that lifespan and SES measures paint different pictures of persistence, even within the same 

sample. Strikingly, we find that intergenerational persistence in occupation-based income and 

intergenerational persistence in lifespan are independent of each other in space and across cohorts. 

The same is true of sibling correlations in education and sibling correlations in lifespan. In other 
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words, the times and places where parents have transmitted their socio-economic status to their 

children are not the same as those where they have transmitted their lifespan. 

We then compute lifetime utility, using SES measures and adult lifespan and focusing on 

men for whom SES is well defined in historical records. Our results show that measures of the 

intergenerational transmission in well-being that incorporate both SES and lifespan show much 

more mobility than measures of SES alone, at least for men born 1880-1910. They also show larger 

increases across cohorts than either lifespan or socio-economic correlations, suggesting economic 

measures of mobility are not sufficient for characterizing mobility in well-being.  

We end by investigating why the intergenerational persistence in lifespan is so low, given 

that there are important genetic, behavioral and social determinants of health (and thus lifespan) 

which previous research has shown to be strongly transmitted from parents to children. To do so, 

we examine twins, among whom the genetic component is likely to be large. Even among twins, 

however, correlations in lifespan are low. We show that the low correlation in lifespan can be 

explained by the fact that there is a large stochastic component in the determination of lifespan 

that is unrelated to family influences such as genetics or shared environments, as hypothesized by 

Vaupel (1988). This is in stark contrast to economic outcomes such as education or income, which 

are much more influenced by family environments.  

Our paper contributes to several literatures in economics and demography on the 

intergenerational persistence in health, broadly defined. There is a burgeoning literature in 

economics examining the intergenerational persistence in health which generally examines 

specific measures of health, such as birthweight (Currie and Moretti, 2007; Giuntella et al. 2022), 

infant mortality (Lu and Vogl, 2023), mental health (Johnston et al. 2013), BMI (Classen 2010; 

Classen and Thompson 2016), or chronic conditions (Thompson 2014) such as anemia (Kumar 

and Nahlen 2023). An obvious limitation of this approach is that these outcomes are only partial 

measures of health and capture health only at a given age/moment. More recent efforts (e.g. 

Andersen, 2021; Halliday et al. 2019, 2021) have focused on constructing more comprehensive 

health indices that can be compared across generations and that summarize all aspects of health at 

a meaningful point in the lifetime (or across the lifetime) – see the recent handbook chapter by 

Halliday (2023) for an excellent summary of this work. Our work focuses on lifespan, a 

complementary measure of health that focuses on the quantity, and not quality, of life. Unlike other 

health and economic measures, lifespan is an objective indicator that is easily compared across 
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individuals and over time, and it does not require age adjustments to account for lifecycle issues. 

It is also of interest itself, since the length of life directly affects lifetime utility. We further 

contribute to this literature by examining absolute mobility in addition to relative mobility – to our 

knowledge, measures of absolute mobility in lifespan have not been studied before. In the 

intergenerational income literature, researchers have shown that measures of absolute and relative 

mobility can tell very different stories (Deutscher and Mazumder 2023). We show this is true for 

lifespan as well. 

There is a separate large literature in demography investigating the intergenerational 

persistence in lifespan, which began in the 19th century (Beeton and Pearson, 1899, 1901). A 

complete list of these studies along with a summary of their findings can be found in Table A.1.  

Because this literature focuses primarily on genetic influences, it typically uses small convenience 

samples, making results hard to generalize and comparisons across cohorts and heterogeneity 

analyses difficult. Our samples are an order of magnitude larger than those used in this literature 

and include information that can be used to assess its representativeness.1 Nevertheless, our results 

are similar, which we show can be attributed to low levels of persistence across all subgroups and 

birth cohorts we examine.  

We also build on the nascent literature examining the relationship between persistence in 

SES and in health. Using very large samples and measures of lifespan, we confirm what Halliday 

et al. (2021) and Fletcher et al. (2023) find using health measures in relatively small samples: SES 

measures have higher persistence than measures of health or lifespan, and correlations across 

persistence measures of SES and of health or lifespan are low.  

Finally, we use our data to compute the first estimates of correlations in well-being that 

incorporate lifespan.2 Our finding that mobility in lifetime utility is larger than mobility in SES 

alone, echoes the results of Halliday et al. (2021), who compute correlations in measures of utility 

in adulthood based on income and health (rather than lifespan) and also document larger mobility 

in utility than SES. Thus, our findings suggest it is possible to improve mobility in well-being 

through channels other than economic mobility. 

  

 
1Two notable exceptions are recent papers by Kaplanis et al. (2018) and Minardi et al. (2024) who use non-
representative sample of 130,000 and 350,00 individuals, respectively. 
2 Eshaghnia et al. (2022) compute lifetime well-being measures that use 14 different measures of income, 
consumption, and wealth. However, these measures do not incorporate lifespan.  
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II. Data and Descriptive Statistics 

We exploit rich lifespan data from FamilySearch, a public wiki-style genealogical platform 

that includes over 13.7 million registered users and has profiles for over 1.7 billion deceased 

individuals, making it one of the largest collections of publicly available international lifespan 

data. A typical profile includes dates and places of vital events (birth, marriage, and death), sources 

attached to the person’s profile (vital records, Censuses, etc.), and links to the profiles of their 

immediate relatives (parents, siblings, spouses, and children). Most profiles are created by 

individuals doing research on their own ancestors. FamilySearch provides an open edit format 

where anyone can make changes to any profile. The platform also works to enhance and verify 

information by attaching historical records. Previous research with similar genealogical platforms 

has shown that the information on family trees is quite accurate when verified using genetic data 

or vital statistic records (Kaplanis et al. 2018; Minardi et al. 2024). 

To construct our estimation sample, we start with all individuals from the full-count US 

Censuses for 1900, 1910, and 1920. We focus on everyone in these Censuses who was born 

between the years 1880 and 1920, resulting in a base sample of 173.3 million person-year 

observations. FamilySearch provided us with a match file that indicates which of these individuals 

in the Census are attached to a profile on the FamilySearch website. We find that 133.3 million 

person-year observations from the Census are connected to a profile on FamilySearch (a 77% 

match rate). Since someone born before 1900 could have appeared in all three Census years, some 

individuals appear in multiple Census records. Our sample of 133.3 million person-year 

observations correspond to 86.6 million unique profiles, of which 39 million include both a birth 

and death year for the individual. 

Since most profiles on FamilySearch include connections to the individual’s immediate 

family members, we use these connections to gather birth and death information for each 

individual’s parents and siblings. Of the individuals in our sample for whom we have a death date, 

we match 77% to at least one parent with a death date, and match 67% to both parents. This results 

in a final sample that includes 28.7 individuals for whom we have information on their lifespan 

and the lifespan of at least one of their parents. Unfortunately, we do not have cause of death 

information. Figure A.0 provides a flow chart that documents our sample size at each step of the 

data creation process. 
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The data creation process we use in this paper is distinct from the automated linking 

methods that are described in Bailey et al. (2020) and Abramitzky et al. (2021). Rather than using 

automated methods to link Census and death records to construct our sample, we are using the 

efforts of millions of people who have done family history research on FamilySearch. As such, the 

data we use in this paper is more similar to hand linked data created by Costa et al. (2017), 

genealogical data from Geni.com used by Kaplanis et al. (2018), or from Rootsweb.com used by 

Koylu et al. (2020). Data from genealogical websites is often described as the “gold standard” 

linked data and have been used as a benchmark for automated linkages (Bailey et al. 2020). 

The parent-child relationships that we observe on the Family Tree are often derived from 

Census records that include the individual living with their parents. However, parent-child 

relationships on the Family Tree can also come from birth, marriage, and death records, all of 

which often include information about an individual’s parents. Similarly, the information that we 

observe on the Family Tree about the individual’s birth date can come from Census records but 

often are drawn directly from attached birth records or other records that include exact birth dates 

(rather than age as is reported in most Census years). 

There are several reasons to believe that the linkages to birth and death info that we observe 

on the Family Tree are likely better than automated linking methods. First, we are able to link a 

Census record to a birth record by using information about the focus person and both their parents 

and by comparing the place of residence to the place of birth.  Second, in our data, once the Census 

is linked to a birth record, the researcher can use the exact date of birth to better link to a death 

record. Third, in our data, we can link to a marriage record which can help in finding death info 

for women. Fourth, some death records include a lot of information about the family members 

(especially obituaries) which can help reduce false matches. 

 

a. Data Quality 

To examine the accuracy and representativeness of the lifespan data derived from the 

FamilySearch Family Tree, we use the Social Security Administration (SSA) cohort life tables by 

year of birth and sex, which are available for the 1900 birth cohort onwards.3 These national 

estimates are produced from state reports and try to account for missing populations: not all states 

are in the vital registration system (e.g. in 1900 only 10 states were in the death registration system, 

 
3 Available at https://www.ssa.gov/oact/HistEst/CohLifeTables/2020/CohLifeTables2020.html 
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with 36 states covered in 1920), and there is under-registration in covered states (Hetzel, 1997). 

Although it is ultimately impossible to determine whether these data are representative of the 

nation, they constitute the gold standard. 

To compare our sample with the SSA cohort life tables, we plot the raw lifespan histogram 

for our sample and for the SSA data beginning at age zero (see Figure A.1). We focus on the 1900 

birth cohort because the SSA estimates are most accurate for Census years, during which 

populations are observed rather than estimated. Compared to the SSA data, our sample greatly 

underrepresents individuals who died during childhood. This occurs either because individuals 

who are born between Censuses and die young do not appear in a Census, or alternatively, because 

their deaths are not noted in the Family Tree, a common problem in genealogical data (Kaplanis 

et al. 2018; Hollingsworth, 1976; Minardi et al. 2024).  

However, if we condition on individuals surviving to 25 years old (the bottom panel of 

Figure A.1), the distribution of lifespan in our data is much closer to the distribution in the SSA 

data. Conditional on surviving to 25, the distribution of age at death is shifted to the right in our 

sample, with our sample’s mean age at death slightly above that in the SSA data, but matching the 

shape of the distribution quite well.4 For the 1900 birth cohort, the expected age at death 

conditional on survival to age 25 for males in our data is 70, whereas it is 68 in the SSA data; for 

women, these figures are 76 and 74, respectively. The differences are smaller for the 1910 birth 

cohorts, for whom the gap is about a year, as shown in Table A.2. Part of this difference is likely 

because our final sample underrepresents Black individuals and immigrants, two groups with 

higher-than-average mortality rates (Hacker 2010, Fogel 1986). In addition, the SSA tables were 

limited to data from states that had Vital Registration Systems in place. The SSA sample is re-

weighted to make it representative of the US, but the weighting may not be sufficient. Our data, 

on the other hand, includes all states. 

 

b. Our Sample  

There is a natural asymmetry in the lifespan distribution of our base sample and that of 

their parents stemming from the fact that not all individuals survive to become parents. As a result, 

we never observe what the correlation in lifespan would have been for individuals who did not live 

long enough to have children. To address this asymmetry and the issue of missing deaths among 

 
4 This is also clear when comparing the survival curves for the 1900 and 1910 cohorts as shown in Figure A.2.  
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children, we restrict our main sample to parents and children who lived to at least 25, which is 

commonly done in studies of lifespan persistence (Table A.1) and is also what is typically done 

when investigating intergenerational persistence in socio-economic outcomes, which are not 

observable at younger ages. Thus, our study investigates adult lifespan, which we define as the age 

at death among those who survived to age 25. We test the robustness of our results to this choice 

of cutoff.   

Our final sample includes 26.1 million child-parent pairs.5 This sample includes at least 

30% of the target population (individuals in the 1900-1920 Censuses who were born between 1880 

and 1920, survived to age 25, and whose parents also survived to age 25).6 These data have several 

advantages over previous datasets constructed to study lifespan transmission. First, because we 

sample our population from the Censuses, we can establish the representativeness of the data. 

Second, because we use family trees to identify families, we are not limited to studying families 

living together at a given point in time, as would be the case if we tracked individuals from a given 

Census. Third, because the Family Tree aggregates data from a very large number of sources, our 

age at death information is more complete, available for all years, and not subject to truncation 

issues, which is an important and common limitation in other datasets that obtain age at death from 

national databases such as the Death Mortality Files or the Numident. Finally, because our samples 

are very large, we can cut the data along multiple margins to study heterogeneity.  

 

c. Summary Statistics 

Table 1 presents summary statistics for our analysis sample. Our data include information 

from the original Census record, including race, place of birth, and place of residence. We also 

have the total number of siblings and the individual’s birth order which come from the Family 

Tree. These summary statistics make clear that our sample, while large, is not representative of all 

groups in the population: nearly all individuals (99%) in our sample are white (instead of 88% in 

the full Census) and very few are immigrants (1% instead of 8%), 13% have an immigrant father 

 
5 We also remove from our sample a handful of individuals who have a lifespan greater than 110 since, for the 
cohorts we consider, these longer lifespans are likely a result of measurement or reporting error.  
6 There are 89 million individuals born from 1880 to 1920 observed in the 1900, 1910 and 1920 Censuses (see figure 
A.0), when they are ages 0-20. A lower bound of the fraction of the target population we have in our data is 30% 
(26.1/89). However, many of these individuals in the Census will not survive to age 25. For example, according to 
the SSA cohort tables, 26% of men born in 1900 died prior to age 25. Because there are no cohort tables for the 
cohorts born 1880-1900 it is not possible to compute the exact fraction of the targeted population we include. 
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(instead of 24%) and 10% have an immigrant mother (instead of 19%) (also see Table A.3).7 Our 

data do have good representation of women, who are typically under-studied in analyses of 

intergenerational correlations (Hollingsworth 1976). Our data are also skewed towards the 

Midwest and under-represent the North relative to the full Census data.  
Although non-representativeness remains an important issue in our study, our sample is 

substantially larger than samples used in previous research, including the cohort tables from the 

SSA which include only a subset of states. Whenever possible, we compare our means to SSA 

data. We also present results separately by race, nativity, sex, cohort, and state of birth (which is 

available for all native-born individuals). To our knowledge, no estimates of lifespan and its 

transmission exist for many of these subgroups (e.g. Blacks or immigrants).  

 The average man in our sample (conditional on surviving to age 25) lived to age 70.2; the 

average woman lived 6 years longer, to age 76.1. This 6-year sex gap is consistent with previous 

research based on period data (Goldin and Lleras-Muney 2019) and with the sex gaps in the SSA 

data, which are 6.2, 6.97 and 6.35 for the 1900, 1910 and 1920 birth cohorts surviving to 25. Note 

that, since we restrict to individuals who lived to age 25, the year of death ranges from 1905 to 

today, and its 10-90 percentiles are 1946 and 2000; most individuals in our data (90%) lived 

beyond the 1918 flu pandemic and WWII and died in the second half of the 20th century (see Figure 

A.3).  

 Figure 1 shows the trends in cohort life expectancy at age 25 for cohorts born from 1880 

through 1920. For cohorts born before 1890, adult lifespan fell for men and was stagnant for 

women.8 This 19th century decline for men is consistent with the observed decline in heights among 

US men for birth cohorts born 1830 to 1890, and with the increases in period mortality observed 

in the middle of the 19th century. This decline is usually ascribed to the poor sanitary and pollution 

 
7 It is well known that genealogies underrepresent Black individuals, immigrants, and children (Pope 1992). 
8 Historical trends in life expectancy in the US are hotly debated because of data concerns – see Hacker (2010) for a 
comprehensive discussion. However there appears to be consensus based on period data that life expectancy at age 
10 (or 20) fell sometime in the 19th century and then started increasing (Costa 2015, Hacker 2010). Although there is 
no consensus on the exact timing of the reversal most demographers agree—based on period data—that life 
expectancy rose after 1880. The only cohort data we are aware of comes from Pope (1992), who reports declines in 
adult cohort life expectancy for cohorts born 1760 to 1830 and an increase thereafter, with cohort life expectancy for 
the 1880-1889 cohorts almost identical to those born in 1760-1769.  The decline in male life expectancy for cohorts 
born in the late 19th century is also observed in France: cohort life expectancy of French men fell for men born in the 
late 1870s and until the end of the century, while period life expectancy was constant (see Figure A.4). In a 
companion paper, we show that the decline in lifespan for men is in part due to their greater survival to age 25 
(Beltrán-Sánchez et al. 2025). 
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conditions that accompanied urbanization and industrialization (Pope 1992; also see Costa 2015 

for a review).  

Starting in 1890, there was a steady increase in lifespan for both sexes. Among those 

surviving to age 25, the age at death rose from 73.5 to 78.1 in 1920 for women and hovered 

between 69.5 to 71.5 for men. There are many possible contributors to these increases. During the 

second half of the 20th century, when most of the individuals in our cohorts died, the main driver 

of improvements in life expectancy was technological innovation, particularly in the prevention 

and treatment of cardiovascular disease (see Beltrán-Sánchez et al. 2025, Cutler et al. 2006). 

The second notable trend is that the female advantage in lifespan grew substantially across 

these cohorts. This occurred in part because, for men, adult life expectancy was falling for cohorts 

born in the 1880s and only began rising modestly in the 1890s. But the gap also grew because, 

after 1900, the increase in longevity is larger for women than for men. The rise of the female 

advantage in lifespan has been documented before using period data, which marks 1900 as the 

year in which this advantage first emerges (Preston and Wang, 2006; Beltrán-Sánchez et al. 2015; 

Cullen et al. 2016). Our cohort data shows that, in fact, the female advantage was already large at 

the turn of the century, at least among adults.9  

Figure 1 also shows the trends across cohorts using the SSA data, beginning in 1900. The 

increases in adult lifespan observed in the SSA data are very similar to those observed in our data, 

although the increases in adult lifespan are somewhat steeper in the SSA data. Thus, our data shows 

similar levels and qualitative trends to the SSA data. This suggests that our data do not suffer from 

large systematic biases and are broadly representative of the US population, despite the under-

representation of smaller groups. Also notable is that our data do not appear to systematically 

overstate lifespan, a common observation in demographic studies (Hacker 2010). 

 

III. A Simple Model of Lifespan and Implications for Mobility  

We now present a simple model to help provide a framework to better understand 

intergenerational correlations in lifespan and their relation to correlations in SES and sibling 

correlations. Previous research on the determinants of lifespan suggests that lifespan is a function 

 
9 These findings suggest that the female advantage is not uniquely driven by the medical developments in the 1930s 
and 1940s that lowered maternal mortality (Jayachandran et al. 2010). Other factors, such as lower exposure to 
infectious diseases likely contributed to these lifespan gains as argued by Goldin and Lleras-Muney (2019).   
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of genetics, environmental factors (rain, temperature, the quality of the air, the availability and 

quality of food, access to and quality of life saving technologies, the quality of social interactions, 

etc.), sex, socioeconomic status (education, income and occupation), and random components 

(Cutler et al. 2006, van den Berg et al. 2017).   

Denote 𝐿!"#$
%  as the lifespan (or age at death) of an individual i, with sex g, from family j, 

living in place s, and in birth cohort c. Suppose that the individual’s lifespan is determined uniquely 

by their genes (𝐺!"#$
% ), environmental factors that are common to all individuals living in the same 

place and cohort (𝛼#$), a sex-specific factor common to each sex, capturing biological, hormonal 

and social factors (𝛾!
%), social economic status (q	!$&'&), and random factors (𝑒!"#$). Let 𝐺"#$()

*  and 

𝐺"#$()+  denote the genes of the female parent (mother) and the male parent (father) (c-1 represents 

the parents’ cohort). Genes are transmitted with noise, denoted 𝜂!"$
*  and 𝜂!"$+ . Children receive half 

of their genetic endowment from each parent: 𝐺!"#$
% = )

,
+𝐺"#$()

* + 𝜂!"$
* + 𝐺"#$()+ + 𝜂!"$+ -. We 

assume 𝐺"#$()
*  and 𝐺"#$()+  are random variables with an unknown variance-covariance matrix 

reflecting the extent of assortative mating based on genetics. The variables 𝜂!"$
*  and 𝜂!"$+  are 

assumed to be distributed with mean zero and an unknown variance-covariance matrix, where the 

covariance is assumed to be zero.  

We start with a very basic model that treats these factors as linearly additive in the 

determination of lifespan. In this model, for child i in family j, lifespan is given by: 

𝐿!"#$
% = d )

,
+𝐺"#$()

* + 𝜂!"$
* + 𝐺"#$()+ + 𝜂!"$+ - + 𝛼#$ + 𝛾!

% + lq	!$&'& + 𝑒!"#$           (1) 

where 𝑒! is a random variable, assumed to be independent across individuals and from G, 𝛼#$, 𝛾!
%,	 

and q	!$&'&. The parameter d represents the effect of genes on lifespan, where the genes are assumed 

to affect lifespan through a linear index, such as a polygenic score.10 Already here it is worth noting 

that the contribution of parental genes to a child’s lifespan is more complicated than it first appears. 

Although genes may determine lifespan, and parents pass on these genes to their children, each 

gene does not uniquely map onto specific traits. In fact, most traits like height or lifespan are 

polygenic – they depend on how hundreds of genes are combined and thus it is possible to both 

 
10 A polygenic score is a weighted sum of different genes, where the weights have been estimated typically by a 
GWAS study. For example, Deelen et al. (2019) and Timmers et al. (2019) identify genes that affect lifespan. 
Timmers et al. construct a linear polygenic score to predict lifespan using the identified genes.  
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have traits that depend highly on genes and to have low transmission of traits.   

We assume that the common environmental component (𝛼#$), the sex-specific component 

(𝛾!
%), and social economic status (q	!$&'&) are independent of the genes G and of other random 

individual specific shocks.11 The parameter l represents the effect of SES on lifespan. In addition 

to assuming linearity in genes and environment, Equation (1) assumes that there are no interactions 

between sex, genes and the environment, which have been shown to exist (e.g. van den Berg et al 

2017). 12 With this being said, this simple model provides a useful baseline.  

This data-generating model has several implications for absolute and relative mobility, 

sibling correlations, and for how the persistence in lifespan relates to the persistence of SES.  

 

Absolute Mobility. We define absolute mobility as Pr2𝐿!"$
% > 𝐿-"$()

% 4, namely the probability that 

children live a longer life than their same-sex parent. If the parents and the children share the same 

SES and the same sex, live in the same location, and the environment is stationary (i.e. 𝛼#$ =

𝛼 	∀𝑐, 𝑠), then the expected lifespan of fathers (mothers) and sons (daughters) is identical, and so 

is their variance. Thus, the probability that the lifespan of a child exceeds that of their parent is 

given by Pr(𝑒!"#$ > 𝑒!"#$()), which depends on the distribution of 𝑒!"#$ – if this distribution is 

normal, for example, then the probability is 0.5. For a closed population (where the joint 

distribution of 𝐺 is constant), the only drivers of absolute intergenerational mobility will be 

changes in SES and the environment.  

In general, however, the environment is not stable, with changes in public health policies 

and medical technologies impacting lifespan over time. This suggests there will be differences in 

absolute mobility. In addition, the SES of a child could also differ from the SES of their parent 

due to broad economic shifts or through regression to the mean, in which case absolute mobility 

is determined by two factors: whether the environmental changes are affecting lifespan and 

whether children have a different SES than their parents. This will also be partly determined by 

migration, which will result in different environments across generations. 

 
11 Evolutionary biology shows that over long periods of time environmental conditions will affect the set of genes 
that survive in the population. Thus, the assumption that the genes and the environment are uncorrelated is likely 
incorrect. This has been noted before e.g. by Manski (2011). Recent papers in genetics have demonstrated that genes 
are indeed correlated with environments (e.g. Belsky et al. 2016).  
12 This is also unrealistic. Life expectancy for women is higher and has grown more than that of men in the 20th 
century, which suggests environmental changes have favored females, see Goldin and Lleras-Muney (2019). 
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Relative Mobility. Relative mobility measures capture a different concept: whether parents who 

live longer than their peers will have children who will live longer than their own peers. Our 

primary measure of relative persistence—which is the inverse of mobility—is the regression 

coefficient of a child’s lifespan on the parents’ lifespan. This relative persistence measure (as well 

as alternative measures such as the Pearson correlation or the rank-rank slope) depends crucially 

on the covariance in lifespan between parents and children. For example, we can express the 

covariance between fathers and sons as:  

𝐶𝑂𝑉2𝐿!"#$+ , 𝐿!"#$()+ 4 = d, )
,
𝐶𝑂𝑉+𝐺"#$()

* , 𝐺"#$()+ - + d, )
,
𝑉2𝐺"#$()+ 4+	𝐶𝑂𝑉(𝛼#$ , 𝛼#$()) +

l,𝐶𝑂𝑉(q	!$&'&, q	!$()&'& ) + 𝑉(𝛾!+)           (2) 

This covariance, and thus our persistence measure, depends on genetic and non-genetic factors. 

There are three genetic components: how much genetic assortative mating there is on the part of 

the parents (𝐶𝑂𝑉+𝐺"#$()
* , 𝐺"#$()+ -); how much parental genes affect child’s lifespan (𝛿); and the 

variance of paternal genes. There are three other components: the extent to which parents and 

children share the same environment (𝐶𝑂𝑉(𝛼#$ , 𝛼#$())); the extent to which parents and children 

share the same SES (𝐶𝑂𝑉(q	!$&'&, q	!$()&'& )); and the variance of the sex specific component (𝑉(𝛾!+)).  

 

Sibling and Intergenerational Mobility. Our simple model has implications for how sibling 

coefficients (from regressing a child’s lifespan on their sibling’s lifespan) relate to 

intergenerational coefficients (from regressing a child’s lifespan on their parent’s lifespan), and 

how this depends on sex and on whether or not the siblings are twins. We can summarize the 

predictions of the model as stating that, in a stable environment if parents and children share with 

the same SES and environment, the following will hold for males:  

𝛽./!0# > 𝛽123.452# = 𝛽*6.452(#30 > 𝛽+3.452(#30 > 𝛽*6.452(+3.452      (3) 

where the 𝛽 is the coefficient from a regression of i’s lifespan on the lifespan of their parent or 

sibling. The same will hold for females (see Appendix A for proofs). Thus, the model predicts that 

(identical) twin correlations will exceed sibling coefficients, but sibling coefficients will be 

identical to parent-child coefficients within sex.  

However, if the environment and SES siblings share is more similar than the environment 

and SES that parents and children share, then the sibling coefficients will exceed the parent child 
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coefficients.13 It is unclear a priori whether father-son coefficients will exceed mother-daughter 

coefficients; this will depend on whether the variance in the female-specific component is larger 

or smaller than variance in the male-specific component (i.e. whether 𝑉(𝛾!
*) or	𝑉(𝛾!+) is larger). 

Similarly, it is unclear whether brother coefficients will exceed sister coefficients.14 Finally, 

although the simple model states that same sex coefficients will be larger than cross sex 

coefficients, this ignores possible causal effects of parental lifespan on child lifespan: maternal 

lifespan could matter more than paternal lifespan for children of both sexes.  

 

Relationship Between Intergenerational Persistence in Lifespan and SES. Prior research has 

estimated substantial persistence in SES across generations and has shown that SES is a strong 

predictor of lifespan. What does this imply for the intergenerational persistence in lifespan? 

Suppose that SES is generated 𝜃!$&'& = 𝛽&'& ∗ 𝜃!$()&'& + 𝜖&'&, where 𝛽	is the intergenerational 

persistence in SES. We can then express the coefficient in lifespan 𝐶𝑜𝑒𝑓𝑓(𝐿!"#$, 𝐿!"#$()) as a 

function of the persistence in SES by modifying the expression in (2) to obtain (see appendix A):  

𝐶𝑜𝑒𝑓𝑓2𝐿!"#$, 𝐿!"#$()4 = 𝜆, 7628q	!"#$
%&% :

762(<!'("#$)
𝛽&'& + 𝜋        (4) 

where 𝜋  includes all other terms. This expression makes it clear that the contribution of 𝛽&'& is 

likely small: 𝜆 (which is the effect of SES on lifespan) hovers around 0.3 for these cohorts (using 

education as a measure of SES, see Lleras-Muney et al. 2022); the variance of education is about 

9.7 (Table 1); and the variance of lifespan is about 256. Altogether, then, 𝜆, 7628q	!"#$
%&% :

762(<!'("#$)
 is small 

(~.0034). 

 

Lifespan and Lifetime Utility. To model the intergenerational transmission of well-being, we 

start with a simple model of lifetime utility. The lifetime utility of a 25-year-old adult (U) can be 

 
13 In models with differential parental investment in children, sibling coefficients may also exceed intergenerational 
ones if parents aim to equalize outcomes among their children.  (See Griliches 1979 and Behrman et al., 1982.) 
14 The prediction that 𝛽)*+,-.*/ = 𝛽01,-.*2/+3 contrasts with other models (see Solon 1999 for one example) that 
predict that the sibling correlation will be different from that of intergenerational persistence.  This is a result of our 
model specification, where we assume that parents and children share 50% of their genes (as do non-identical twin 
siblings) and that parents and children grow up in the same environment (as do siblings).  In more nuanced sibling 
models, there is often a family background component that is not shared between siblings (due, for example, to 
variation in the age of siblings), and in intergenerational models, there is often a family background component that 
is not shared between parents and children. 
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expressed as 

𝑈 = ∫ 𝑒(>.𝑢(𝑐.)𝑑𝑡
<
.?,@     (5) 

where is L is their lifespan (age at death), 𝑐.is their consumption in year/age t, 𝑢(. ) is the per period 

utility and 𝜌 is their discount rate. Following Becker et al. (2005), we assume that 1) per period 

income 𝑦 is constant (an assumption they/we make because we typically only have one annual 

observation for income per adult), and 2) 𝜌 = 𝑟.  Then it follows that the optimal consumption 

path consists of consuming one’s income every period, so that 𝑐. = 𝑐 = 𝑦. Under these 

assumptions, we can rewrite equation (5) as 

𝑈 = 𝑢(𝑦)L 𝑒(>.𝑑𝑡
<

.?,@
 

 

If we further assume that 𝜌 = 0 so that people do not discount their future years, then lifetime 

utility is simply given by  

𝑈 = 𝑢(𝑦) ∗ 𝐿,@       (6) 

which states that lifetime utility is simply the per period utility of income multiplied by the number 

of years the individual lives after age 25, LE25. 	Although this expression is based on a strong set 

of assumptions, it has the advantage of providing an intuitive measure that can easily be computed 

for all individuals with income and lifespan information. This model makes it clear why we care 

about the intergenerational transmission of lifespan: the longer people live, the higher their lifetime 

utility, independent of health.  

 

IV. Absolute Lifespan Mobility Across Generations 

We first investigate the transmission of lifespan from parents to children by plotting the 

joint distribution of lifespan across generations (Figure 2). The child’s adult lifespan is on the y-

axis and the parent’s adult lifespan is on the x-axis. Lighter colors correspond to greater density. 

These joint distributions reveal several important patterns. First, this joint distribution is 

asymmetric: for all adults, there is a long tail of individuals who die relatively young, with 

substantially more compression at the top of the distribution. Second, while there is a positive 

correlation between parents’ and children’s adult lifespan, there is substantial variance. For 

example, consider men with fathers who died at age 77 (the modal age at death among fathers in 

the sample). Although the median age at death among the sons of these fathers is 76, the IQR is 
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64 to 85. Thus, 50% of men will die at either substantially younger or substantially older ages than 

their fathers.  

These figures already suggest that a parent’s adult lifespan is only weakly predictive of 

their children’s adult lifespans. Indeed, some simple computations confirm what we see in the heat 

map. For example, the chances that a child will live to be the same age minus/plus 1/2/5 year(s) as 

their same sex parent are only 6%, 11% and 24%.15 These shares do not vary meaningfully across 

cohorts. Most people live substantially longer or shorter lives than their parents. 

Next, we investigate absolute mobility by assessing whether children live longer than their 

parents; this corresponds to the area of the distribution above the 45-degree line in Figure 2. Given 

the rise in adult lifespan across cohorts that we observe during this period, we might expect that 

absolute mobility will increase as well. However, this need not be the case. If all increases in 

lifespan accrue to children who would already be living longer than their parents, then this measure 

of mobility will remain constant. There is in fact no mechanical relationship between increases in 

life expectancy and our main measure of absolute mobility.16  

Figure 2a documents that absolute mobility in lifespan is substantially higher for women 

than men: most of the joint female distribution is above the 45-degree line, but most of the joint 

male distribution lies below the 45-degree line. Indeed, roughly 57% of women live longer than 

their mothers, but only 47% of men live longer than their fathers, a substantial 10 percentage point 

gap. While we are unaware of similar estimates in the literature, we do know that these measures 

for men are similar to existing estimates of absolute mobility in income for the 1880-1920 birth 

cohorts which was in the 40-50% range (Song et al. 2020; measures for women are not available).17  

In this analysis, we require both children and parents to survive to age 25. However, this 

censoring rule is asymmetric in the sense that, if a parent is older than 25 when they have a child, 

then by definition, they have survived to that (older) age, whereas we are requiring children to 

survive only to age 25. To test the sensitivity of our conclusions to this censoring rule, we 

 
15 If a father died at age 80, we code the son as dying within one year of the father if he died at 79, 80 or 81; within 2 
years if he lived to 78-82 and 5 years if he lived to 75-85. 
16 Our aggregate absolute mobility measure could fall even when lifespan is increasing if the gains in lifespan are 
unequally distributed. For example, suppose one group of children goes to war and dies young while another group 
benefits from medical advances. Lifespan in the first group will fall, and they will live shorter lives than their 
parents. Lifespan in the second group will rise, and they will live longer than their parents. If the first group is larger, 
overall absolute mobility will fall. But if the gains in years lived in the second group is large, then average age at 
death might in fact increase.   
17 Absolute income mobility was substantially larger for cohorts born in 1940 and later, ranging from 90% for 
children born in 1940 to 50% for children born in the 1980s (Chetty et al. 2017). 
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implement an alternative rule that requires children to survive to the same age their parent was at 

time of their birth. This alternative censoring rule increases the absolute mobility estimates 

somewhat for both men and women, but the trends remain similar (see Figure A5). 

Our absolute mobility measure does not quantify how much better off children are than 

their parents among those living longer lives, or how much worse off are those who died younger 

than their parents. The mean difference in the ages at death of children and their parent (child-

parent) is 3.8 for women and -1.4 for men (see Figure A.6). Thus, the increases in lifespan for 

women relative to their mothers are quite substantial, and the declines for men relative to their 

fathers are less so. However, these distributions are symmetric and have large standard deviations, 

of around 20 years of life for both sexes, suggesting again that it is hard to predict the age of death 

of the child based on the age at death of the parent.  

One might expect absolute mobility to differ depending on who benefits most from 

advances in public health, medical technologies, or policies like health insurance expansions. We 

investigate heterogeneity in absolute mobility in panel A of Figure 3. We see that, among more 

highly educated families (as proxied by whether the child has 9 years of schooling or more), the 

probability that the child outlives the parent is approximately .05 lower than the same probability 

among less highly educated families. Thus, low SES individuals became more mobile relative to 

high SES individuals because of lifespan increases, particularly among women. These results are 

consistent with findings that technologies such as sulfa drugs and antibiotics lowered socio-

economic disparities in health by improving the health of low SES individuals the most 

(Jayachandran et al. 2010; Alsan et al. 2021). These developments were particularly important in 

reducing maternal mortality, an important cause of death among young women before 1936.  

We also find significant racial differences, with white absolute mobility higher than that of 

non-whites, particularly for women. Outside of sex, SES, and race, we see no other meaningful 

(and consistent) differences across groups defined by immigrant status, the immigrant status of the 

parents, family size, birth order, or state of birth, although there is a bit more variation among men 

than women for all subgroups. It is notable that, although there are very large differences in adult 

lifespan by state of birth (the gap in average lifespan in 1880 between the longest-lived and the 

shortest-lived state was roughly 6 years for women and 8 years for men), the absolute mobility 

measures are quite similar across geographies.    
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Figure 4 shows trends in absolute mobility, tracking cohorts over time. For the 1880-1900 

birth cohorts, absolute mobility was increasing for women but decreasing for men. These trends 

reverse beginning around the 1900 birth cohort, with absolute mobility falling for women and 

increasing for men. The story for men is straightforward: the trend in absolute mobility follows 

the trend in average lifespan. The decline in absolute mobility is consistent with the decline in 

average lifespan for the cohorts born 1880 to 1900. Then, absolute mobility rises as the average 

lifespan rises (see Figures A6). The story for women is more complicated. Absolute mobility first 

rises for women as lifespan is rising, but then, beginning around 1900, absolute mobility falls even 

though the average female lifespan is rising for the 1900-1920 cohorts. Why? A detailed 

examination of the heat maps for the 1900 and 1920 birth cohorts (Figures A7) provides an 

explanation. There is a small group of daughters born in 1920 living substantially longer lives than 

earlier cohorts: they are no longer dying in their 20s and 30s. This might be the result of declining 

maternal mortality for these later cohorts. Maternal mortality started falling significantly only after 

1935 and would thus only affect cohorts born after 1900 or so. These increases explain why the 

average lifespan is rising. But there is also a relatively large group born in 1920 dying in their 70s, 

living somewhat shorter lives than those born in 1900 (and thus living shorter lives than their 

mothers). These trends highlight important sex differences in both lifespan and its transmission.18 

They also highlight the importance of observing these joint distributions – and not just average 

lifespan – to predict trends in absolute mobility.  

In sum, measures of absolute lifespan mobility show that mobility was substantially larger 

for women than men and for individuals who obtained low levels of education. It also varied 

significantly from 1880 to 1920, rising and then falling for women, with the reverse occurring for 

men. One might have hypothesized that the introduction of social insurance in the second part of 

the 20th century (including pensions and public health insurance), would have increased health 

mobility for more recent cohorts. This is somewhat true for men, but not for women.  

 
18 Although male absolute mobility is a bit higher for the 1920 cohort than for the 1880 cohort, this gain obscures 
important differences in absolute mobility by parental age. Figure A.7 shows the probability that the son lives longer 
than his father for the early (1880) and late (1920) cohorts. Men born in 1880 were more likely to outlive fathers 
who lived short lives (to age 60 or less) than in the 1920 cohort. This is likely due to the 1920s cohort exposure to 
WWII, which killed a large number of men born around 1915 and 1925. However, this is the opposite of what we 
see among longer-lived fathers; for fathers who lived longer than 60 years, sons in the later cohorts were more likely 
to outlive their fathers than sons in the earlier cohort. Because this second effects dominates, on net the mobility is 
larger for the 1920 cohort. Among women who did not die in large numbers in WWII, we see a similar pattern, 
although for mothers who lived longer than 40 years, daughters in the later cohorts were more likely to outlive their 
mothers than daughters in the earlier cohort. 
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V. Relative Mobility and Relative Persistence in Lifespan  

a. Relative Mobility Measures: Levels and Trends 

Most research focuses on relative (rather than absolute) mobility, namely how individuals fare 

relative to others in their cohort. One way of summarizing the data is to compute transition 

matrices, which show the probability that a child born to a parent in a given quintile of the parental 

lifespan distribution ends up in a given quintile of the child lifespan distribution.  

Table 2 shows that the transition matrices for both women and men are close to what we would 

expect if there were perfect mobility in lifespan: the diagonal elements are only somewhat larger 

than 20%, and the off-diagonal elements are not substantially smaller than 20%. Thus, there is 

substantial upwards and downwards mobility. For example, the son (daughter) of a father (mother) 

who was in the bottom quintile of lifespan has a 17.4% (17.5%) chance of being in the top quintile 

of the lifespan distribution. By contrast, among cohorts born in 1970s, the probability that a child 

born to the poorest 20% of parents ends up in the top 20% of the income distribution is only 10% 

(Chetty et al. 2014). The probability of living a long life (top quintile) conditional on having a 

parent who lived a long life (also in the top quintile) is about 25% for both fathers/sons and 

mothers/daughters, suggesting that long-lived parents have children who are likely to also be long-

lived; this finding is consistent with those of van den Berg et al. (2019). This is the largest deviation 

from 20%, but even this deviation still suggests relatively low persistence, at least compared to 

what has been documented for income. For example, Chetty et al. (2014) find that the share of 

children born to parents in the top quintile of income that also end up in the top quintile of income 

is 36.5%.  Overall, relative mobility measures show high upward mobility.  

When we look across cohorts, we see that, in contrast to absolute mobility, relative mobility 

appears to be very stable across cohorts (Figure 5). Upward mobility (the fraction of children born 

to parents in the bottom 20% of adult lifespan who make it to the top 20th percentile of the 

distribution of adult lifespan in their cohort) did not change much, remaining at roughly 18% 

throughout the period. Downward mobility (the share from the top 20% that ends up in the bottom 

20%) also stayed constant at around 17% for both men and women. Persistence at the top (the 

share that stays in the top quintile) was around 25-27% for both sexes. Persistence at the bottom 

(the share that stayed in the bottom quintile) remained around 22% for both sexes.  

 Together, these results show that absolute and relative measures of mobility give very 
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different pictures of lifespan mobility. This is also true when looking at income (e.g. Chetty et al. 

2017). In short, we again highlight the importance of both absolute and relative measures of 

mobility as noted by Deutscher and Mazumder (2023). 

 

b. Relative Persistence  

We now follow the economics and biology literatures and compute measures of persistence rather 

than measures of mobility. A commonly used measure of persistence comes from regressing sons’ 

outcomes on fathers’ outcomes, which estimates the slope of the joint distribution of lifespan in 

levels, as shown in Figure 2. As is obvious from the heat maps, the slopes for both relationships 

appear small. This is not because life expectancy is rising – lifespan increases across cohorts have 

no immediate or mechanical implications for intergenerational correlations or other measures of 

relative persistence such as regression coefficients. For example, if all children live 20 years longer 

than their parents (shifting the distribution up), then the correlation in lifespan across generations 

will remain the same. Conversely, life expectancy could be stable, but the intergenerational 

persistence in lifespan could change if the joint distribution changes shape. 

Our main specification relates the lifespan of the child (𝐿!A) to the lifespan of the parent 

(𝐿!B) by estimating the following equation: 

	𝐿!A = 𝛽C + 𝛽)𝐿!B + 𝑋𝛽, + 𝜖!                          (7) 

where Li, our main variable of interest, is lifespan in years for individual i and 𝐿!Bis the lifespan of 

one of the parents, conditional on both the parent and child surviving to age 25. We also present 

results in logs and percentiles. In some specifications, we also allow 𝐿!B to refer to the average of 

the parents’ lifespan. The standard errors are clustered at the family level, since our sample can 

include multiple children from the same parents. 

Our preferred estimates include a parsimonious set of controls, X, including indicators for 

the cohort of the child and the cohort of the parents to account for secular trends in adult lifespan. 

In some specifications, we also include state of birth fixed effects to proxy for environmental 

factors, as well as controls for race and immigrant status. We find the relationship remarkably 

robust to the inclusion of additional controls.  

The coefficient of interest is 𝛽), which we refer to as the intergenerational persistence in 

lifespan. In levels, 𝛽) represents the average increase in lifespan associated with a one-year 

increase in the lifespan of the parent. In logs, 𝛽)	represents the intergenerational elasticity of 
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lifespan. In percentiles, 𝛽) represents the Spearman correlation in lifespan. In these specifications, 

regardless of functional form, the coefficient on lifespan, 𝛽), will incorporate the influence of 

parental genetics and assortative mating between the parents, as well as socio-economic influences 

and common environmental factors that affect both parents and children’s adult lifespan as 

discussed earlier. As is typical in this literature, we are estimating associations and not the causal 

effect of exogenously changing parental lifespan. 

The raw coefficient from a regression of the lifespan of a son on the lifespan of his father 

(without other controls) is 0.089 (Table 3, Column 1), while that for a son and his mother is 0.062, 

consistent with the predictions of our simple model where there is a sex-specific component to 

lifespan. When we regress the lifespan of a son on the average of his parents’ lifespan, we find a 

substantially larger coefficient of 0.14. This is consistent both with the fact that there is likely 

measurement error in our variable of interest (lifespan) as well as the fact that there is independent 

information contained in each parent’s lifespan.19 Similarly, turning to daughters, we see that the 

daughter/father coefficient is 0.075 and the daughter/mother coefficient is 0.081. When we relate 

the lifespan of a daughter to that of the average of her parents’ lifespan, the coefficient is 0.15. We 

obtain nearly identical coefficients when we include parent and child birth-year fixed effects 

(Column 2), add state-of birth fixed effects for both parents and children (Column 3), and add 

controls for race and birth order (Column 4). While these characteristics have significant effects 

on the lifespan of the children in our sample, the coefficients on parental lifespan are unchanged.  

In Table 4, we use the same specification as Column 2 in Table 3 (with cohort fixed 

effects), but vary the functional form, starting with the levels specification presented earlier 

(Column 1), a rank-rank specification, where lifespan percentiles are calculated within birth cohort 

(Column 2), and a log-log specification (Column 3). Our coefficient estimates are quite low across 

different functional forms. Raw correlations in lifespan are also smaller than our estimated 

regression coefficients (see Table A.4). For example, the raw father-son correlation is 0.08 (instead 

of 0.09) and the son-parent correlation is only 0.10 (instead of 0.14). Thus, regardless of which 

specification we use, we find that the relative persistence of lifespan is always low. The 

coefficients are almost identical if we drop all deaths that occurred during WWI, WWII and the 

flu pandemic, confirming that low persistence is not the result of these uniquely deadly events (see 

Table A.5). 

 
19 The correlation between father and mother adult lifespan is quite low, at only 0.05 (see Table A.4). 
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To check that our linear specification is appropriate, we plot the relationship between the 

lifespans of parents and children (see Figure A.9). We do this both for the lifespan and the lifespan 

percentile. We find that, for lifespan, the relationship is flat for those whose parents died before 

age 40 and then becomes steeper and remains roughly linear. We hypothesize that the flat 

relationship for parents who died young could be due to many of these early deaths being 

accidental deaths, which result in the parent’s lifespan having less meaningful information about 

the underlying health characteristics of the parent. For percentiles, the relationship is linear at 

almost all percentiles except for the very bottom and the very top. 

Up to this point, we have conditioned on the child surviving to age 25. Prior research has 

used different age cutoffs, ranging from age 15 to age 65 (see Table A.1). Studies focused on the 

role of genes in the intergenerational persistence of lifespan have argued that, to identify genetic 

effects, it is more appropriate to condition on living to very old ages, as younger deaths are more 

likely due to accidents. However, we find that coefficients are remarkably robust to the choice of 

cutoff ages (which we allow to vary from 0 to 65), remaining low across all specifications (see 

Figure 6).20 These results suggest that the genetic contributions to lifespan are small, an issue we 

return to later. We also estimate almost identical coefficients if we choose a different censoring 

rule, where we condition on children living to the age of the parent at the time of the child’s birth. 

For example, the father son coefficient using age 25 as the cutoff is 0.09 and it is 0.087 if we use 

the symmetric cutoff rule instead (see Table A.6).  

While the overall lifespan persistence is low, it may be the case that different groups 

experience different levels of persistence. For example, if some groups benefit more from new 

medical technology or investments in public health, we may see differences in the persistence of 

lifespan. Surprisingly however persistence in lifespan is similar by parent’s characteristics, child 

characteristics, and place of birth (Figure 3b). Even when we do observe differences, the range of 

lifespan persistence is always between 0.06 and 0.10, suggesting low persistence for all groups. 

This is true whether we use lifespan levels or ranks. The most interesting finding here is again by 

education: more highly educated families (as proxied by children with 9 years of schooling or 

more) experience more persistence in lifespan - both fathers/sons and mothers/daughters – than 

 
20  In this figure we also report the estimates that do not restrict the child’s age to age 25. We do not find this 
matters, but as we note in the text individuals under age 25 are very poorly represented in our data, so these results 
are only suggestive.  
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children in less educated families, although, again, the point estimates are all relatively small. 

Similarly, immigrants seem to have slightly lower persistence than natives, although this 

difference seems to disappear by the second generation. There is also some variation across states, 

although again persistence is low throughout. 

 

c. Trends in Relative Persistence 

Figure 7 shows the intergenerational persistence in lifespan in levels by year of birth of the 

child and by sex (Panel a). For men, we find that the lifespan persistence increases from around 

0.06 to around 0.10 over the first two decades of the sample before plateauing for the 1900 to 1920 

birth cohorts. Women see a similar increase for those born in the first two decades but then see a 

decline for those born in the last two decades to roughly 0.07. The lifespan persistence between 

children and the lifespan of both parents increases from around 0.10 to 0.15 for the first 20 birth 

cohorts before also plateauing. While these increases are large in a relative sense, the magnitudes 

remain low.  

While somewhat muted, a similar pattern appears when using a rank-rank specification 

(Panel b). While the lifespan persistence remains low over this entire period, we see a meaningful 

rise from 1880 to 1900 from around 0.07 to about 0.1, a smaller increase than when we compute 

this trend in levels. Moreover, rank-rank specifications tend to show very little difference in the 

evolution of the lifespan persistence across sexes, whereas we see different patterns for men and 

women when we examine relative persistence in levels as well as when we look at measures of 

absolute mobility, highlighting again that different measures of mobility can tell very different 

stories. Interestingly, research has shown that the rank-rank correlation in occupational status also 

remained relatively constant for men born 1880-1920 (Song et al. 2020, Ward 2023, Buckles et al. 

2023) and women born in this period (Buckles et al. 2023).  

Overall, we find little relative persistence in lifespan across generations: although longer-lived 

parents have children who are themselves longer-lived on average, the effect is small. This 

conclusion does not depend on how we estimate persistence and is not limited to any particular 

cohort or group in the population. This stands in contrast with results for occupational status, which 

show much higher persistence for these cohorts: the rank-rank correlation is estimated to be 

somewhere between 0.3 (Song et al. 2020) and 0.7 (Ward 2023, Buckles et al. 2023). Our estimates 
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of persistence are also lower than contemporary estimates of persistence in health, which are 

around 0.3 (e.g. Halliday et al 2021.) 

 

VI. Mobility in Lifespan, Socio-Economic Status and Lifetime Well-being  

Our results so far suggest there is significantly more mobility in lifespan than in other 

economic outcomes, such as education and income. However, this conclusion is based on a 

comparison to the literature, which has used a variety of different cohorts and data selection 

criteria. As a result, it is unclear whether these differences are due to true differences in persistence 

across domains or differences in the samples used in each study.  

To make progress on this issue, we compare correlations in SES and lifespan in two 

samples. First, we follow the economic history literature and use occupation-based incomes 

observed in the Census to construct a sample of fathers and sons for whom we observe both 

occupation and lifespan. Specifically, we use the occsore available in the IPUMS data which 

assigns to each individual the median income in 1950 for their occupation. Second, we look at 

sibling correlations. The sibling correlations are computed using the 1940 Census which has 

occupation-based income and also, crucially, reports education and household incomes. As noted 

earlier, in our simple model of lifespan, if there are significant economic and environmental 

changes (which is the case for the cohorts we study), siblings likely grow up in a more similar 

environment than parents and children—as siblings share the same parents, home, and 

neighborhood—in which case sibling correlations will exceed the measure of intergenerational 

persistence.  This has been shown to be true for measures of SES; Björklund and Jäntti (2012) use 

data from Sweden and estimate brother correlation in schooling of 0.46 and father-son correlations 

of 0.39; similarly, the brother correlations in earnings is 0.24 while father-son correlations are 

0.14.  

 

a. Intergenerational Persistence in Lifespan and SES for Men 

We create a sample for this exercise by taking the data used by Buckles, Price, and Ward 

(2023) who compute presistence in occupation-based incomes for the 1880, 1890, 1900, 1910 and 

1920 birth cohorts. We then keep the subset of fathers and sons for whom we also observe 

lifespans. We focus on men (as the previous literature has done), as women’s labor force 

participation rates were low in this period.  
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Figure 8 presents the results. The yellow line plots the coefficients that result from 

regressing the occupation percentile of the son on the occupation percentile of the father. This 

coefficient is 0.26 for the 1880 cohort, rises to 0.35-0.36 for the 1890 and 1900 cohorts, and rises 

again somewhat to 0.39 for the 1910 cohort.  Although our sample is smaller and potentially 

selected, these estimates closely mirror the levels and trends documented in Buckles, Price, and 

Ward (2023). The bottom line shows the estimates of the coefficients for lifespan and shows that, 

in this sub-sample, we also closely replicate our earlier findings: coefficients rise from 0.06 for the 

1880 cohort to about 0.1 for cohorts born after 1890. Overall, the SES coefficients are about 4 

times larger than the coefficients for lifespan, confirming the intuition from comparisons to the 

literature: SES persists at a much higher rate than lifespan.   

 

        b. Sibling Correlations in Lifespan and SES 

The previous results have two main limitations. First, they only include men, and second, 

they rely on occupation-based income as a measure of SES. To verify our conclusions, we 

construct a subsample of sibling pairs for whom we observe lifespan and whose education, 

occupation, and income we also observe in the 1940 Census. We construct this sample by keeping 

individuals in our data who have the same two parents and who are linked to the 1940 Census. We 

restrict the sample further to include only those with non-missing information on all the SES 

variables in addition to lifespan. This sibling sample is observably similar to the full analysis 

sample (see Table A.7).  

We regress each child’s outcome on the outcome of their same-sex sibling or opposite-sex 

sibling and include birth cohort fixed effects for each sibling (Table 5). We include all unique 

possible sibling pairs as observations and cluster standard errors by family. We estimate sibling 

coefficients for adult lifespan, education, and earnings (both individual and household) using a 

constant sample with non-missing data on all outcomes (Columns 1-4). Because many women do 

not have positive earnings in the 1940 Census, we also consider a less restricted sample, which 

includes all individuals with non-zero measures of education and lifespan (but no restriction on 

earnings) as a robustness check (Columns 5 and 6).  

Several conclusions emerge from these sibling associations. First, similar to Minardi et al. 

(2024) and in line with most prior studies (Table A.1), the coefficients for lifespan among siblings 

are larger than our parent-child intergenerational correlations: for example, the brother-brother 
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coefficient is about 0.13 and the father-son coefficient is 0.08 for this same sample (shown in the 

last column).  

Second, sex plays a similar role among siblings as with parents and children, as would be 

expected if genetic, social, and economic factors differ substantially by sex. Similar to the child-

parent coefficients, we see a similar coefficient for male siblings’ adult lifespan (0.13) or female 

siblings’ (0.11) but a rather weak relationship between brothers’ and sisters’ lifespan (0.04). This 

is consistent with our model’s predictions.  

Third, our estimates for SES persistence are consistent with those in the existing literature, 

albeit a bit larger, suggesting our sample may be broadly representative. The coefficient for 

education is 0.55 for brothers, 0.60 for sisters, and 0.53 for opposite-sex siblings. When we 

consider correlations instead of regression coefficients, we estimate correlations of 0.55 for 

brothers, 0.59 for sisters, and 0.53 for mixed-sex siblings (see Table A.8). These are broadly 

consistent with the literature, which has calculated estimates for more recent cohorts. For example, 

for men, Solon et al. (1991) estimate that the sibling correlation in education is 0.45 for cohorts 

born in 1944-1958, and Björklund and Jäntti (2020) estimate a sibling correlation of 0.43 for 

cohorts born in 1951-1957. Our estimates are somewhat larger for women: Solon et al. (1991) 

estimate a 0.28 correlation for the 1951-1958 birth cohorts, and Mazumder (2008) estimates a 0.34 

correlation for the 1947-1955 cohort. A similar picture emerges when examining income. We 

estimate a coefficient of 0.25 for males and 0.17 for females, comparable to those estimated in the 

literature, which generally range from 0.1 to 0.4 using a single year of earnings.21  

One puzzling finding is the negative sister/brother coefficient on income; this is likely 

driven by the fact that women from wealthier families worked less than women from poorer 

families, which could lead to a negative relationship between brother’s income and sister’s income. 

To address this, Column 4 shows coefficients for the relationship in household (rather than 

individual) income. As expected, estimates using household income are larger than those for 

individual income. The coefficients estimated using household income are similar for sisters 

(0.36), brother-sister pairs (0.33), and brothers (0.35).  

Fourth, we see much larger coefficients (and correlations) for education or income than for 

lifespan within this constant sample. The coefficients for household income are nearly three times 

 
21 See Solon (1999). Correlations are in fact higher when more permanent measures of income are computed 
(Eshaghnia et al. 2023). 
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as large as those for lifespan: they range from 0.33 for brother-sisters to 0.36 among sisters. The 

coefficients for education are even larger, ranging from 0.53 for brother-sister to 0.60 for sisters, 

more than four times larger than the correlations for lifespan. These findings confirm our earlier 

observations that persistence in SES is substantially larger than persistence in lifespan, and this 

holds true regardless of the measure of SES we employ.  

 

c.  The Relationship Between Persistence in SES and Persistence in Lifespan  

Finally, we examine whether persistence in SES and persistence in adult lifespan are 

related across states and across cohorts. Although lower in levels, one might expect that 

intergenerational correlations in adult lifespan are driven by the same factors that make SES 

persistent. If this is the case, then in places where education or income are more persistent from 

one generation to the next, lifespan would be more persistent as well. Persistence in education, 

income and health might also be high in the same locations or periods because education, income, 

and adult health are highly correlated.  

We first estimate this relationship for the subsample of men for whom we observe both 

occupation-based income percentiles and lifespan. In Panel a of Figure 9 we plot the estimated 

lifespan coefficients (from regressing children’s lifespan on parental lifespan) on the y-axis against 

the estimated coefficients for occupation-based income percentiles for each birth cohort on the x-

axis. The estimated relationship (using the inverse variance of the estimated coefficients for 

occupation-based income percentiles as weights) is slightly negative and statistically 

insignificant.22 In Panel b we estimate these coefficients by state of birth instead. Again, the 

relationships are slightly negative and statistically insignificant. Surprisingly, we do not find that 

the persistence of SES and of lifespan are related. 

To confirm these results for both sexes while using better measures of SES, we conduct a 

similar exercise using our sibling sample. Because our measures of education are taken from the 

1940 Census, cohorts born in 1880 will need to live to age 60 to be observed. As a result, for this 

analysis, we restrict our sample to siblings who survive until at least 60 years old so that all cohorts 

are conditioned on living until the same age and can be compared. This is unlikely to affect our 

conclusions, given that we observed similar measures of persistence regardless of our choice of 

age cutoff. 

 
22 The results are very similar if we do not weight the estimates. 
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In Figure 10, we plot the sibling coefficient on lifespan (y-axis) across states (or across 

cohorts) against the sibling coefficient on education (x-axis). Again, when we look across states 

(right panels), we see that sibling SES coefficents and sibling lifespan coefficients are not 

systematically related; places where the coefficient in education is large are not the same places 

where the coefficient in lifespan is high. The same is true across cohorts (left panels). A simple 

regression finds that the slopes summarizing these relationships are very small and, in most cases, 

statistically insignificant, and this is unchanged by using the estimated variances as weights.  

In sum, we find that the persistence of adult lifespan and of socioeconomic status are 

unrelated, whether we measure this using intergenerational persistence in occupation and lifespan 

or sibling coefficients for education and lifespan. This highlights that families and communities 

that succeed in increasing mobility in one domain do not necessarily do so in others. This is 

consistent with recent research using contemporary survey data that documents that places that 

have higher mobility in SES are not necessarily those with higher mobility in health.23 

 

d. Computing the Intergenerational Persistence in Lifetime Well-Being 

The fact that persistence of SES and the persistence of adult lifespan are independent of each other 

implies that mobility in well-being may be different than economic measures alone would suggest. 

We now turn to computing persistence in well-being using lifetime utility as our well-being 

measure. 

 We start by computing lifetime utility following equation (6). Once we choose a functional 

form for 𝑢(𝑦) and calculate lifetime utility for an individual, we can regress the lifetime utility of 

the child on the lifetime utility of the parent. We consider two alternatives for 𝑢(𝑦). The first is to 

assume that 𝑢(𝑦) = O𝑦, as is common in the literature, which assumes there are decreasing returns 

to consumption/income. To compute this in a consistent way across generations, income needs to 

be appropriately deflated. A second approach is to assume that 𝑢(𝑦) = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑦), where the 

percentile denotes a person’s income percentile in their cohort. This functional form is more 

unusual, as it assumes that individuals only derive utility from their position in the income 

 
23 Fletcher and Jajtner (2021) investigate the same question using a contemporary sample of about 16,000 children 
from the AddHealth survey and mobility measures for many outcomes, including measures of health (self-reported 
health status, obesity, smoking, and alcohol drinking). They conclude that “people and places with high mobility in 
one domain are not necessarily highly mobile in other domains.” Halliday et al. (2021) use a sample of about 8,000 
individuals in the PSID and compare mobility in self-reported health and in incomes. They too find that the two 
measures are only weakly related.  
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distribution, rather than from their income levels – individuals likely care about both. However, 

by using percentiles, we avoid adjusting for inflation or accounting for lifecycle differences.  

Moreover, we can compare our results to the literature, which has often used rank-rank correlations 

to estimate the intergenerational persistence in income.   

To compute these measures, we need to observe income (or income percentile) and lifespan 

for both parents and children, so we use the sample of men we constructed in Section VI a, where 

we observe occupation-based income and lifespan for both generations. Figure 8 shows the results. 

The red line shows estimates for the intergenerational persistence in lifetime utility. These 

coefficients are larger than the lifespan coefficients, but smaller than the income coefficients, 

showing that, at least for men, incorporating lifespan reduces the persistence of well-being below 

that of SES. The figure also shows that there is a bigger increase in the persistence of lifetime well-

being over time than there is in either income or lifespans.24  

In sum, lifespan associations are both small in levels and small relative to SES associations. 

They also appear to be nearly orthogonal from SES associations. Lifetime utility measures which 

combine SES and lifespan outcomes into a single measure of well-being show less persistence 

than SES and exhibit different trends than persistence in each of its components.  

 

VII-Why is Lifespan Persistence So Low? 

As noted in the introduction, our finding that persistence in adult lifespan is low is not new. 

Table A.1 reviews many of the studies that have estimated the intergenerational persistence in 

lifespan and sibling/twin correlations using a variety of different populations and samples. These 

studies were first conducted at the end of the 19th century and continue to the present day. Figure 

 
24 To test if our estimates differ using actual household income measures, we turn again to the sample of siblings, 
which we further restrict to those that also have occupation reported in 1940 (see Table A.8). Columns 1 and 3 
demonstrate that our original results hold in this smaller sample, suggesting it is representative. We also compute 
sibling associations in lifespan utility. We find that this coefficient is ~0.42 if we use occupation percentiles to compute 
lifetime utility (column 4) or ~0.47 if we use household income instead (column 5). These coefficients are much larger 
than the coefficient for each individual component, which might be unintuitive. However, the coefficient for lifetime 
utility is not constrained to be between the coefficients of its components. It also depends on for example on how the 
parent’s SES affects the child’s lifespan (see Appendix derivations). Another reason we might see this pattern is if 
parents aim to equalize the lifetime utility of all their children (as argued by Griliches 1979 and Behrman et al., 1982), 
According to this type of model, parents might invest in the education of some and the health or marriage prospects 
of others. Prior research suggests that indeed parents treat children differently across domains (e.g. Grätz, M., & 
Torche, 2016; Breinholt and Conley 2023). If this is true, then summary measures of well-being that combine 
outcomes across different domains, like household income and lifetime utility, will be more correlated among siblings 
than across generations, which is precisely what we observe.   
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11 plots the estimates from a few of these studies and compares them directly to ours (where we 

estimate an identical specification with our data whenever possible). Although our dataset is 

substantially larger and is likely to be more representative of the populations of interest than the 

data used in many previous studies, it is striking how similar the estimates are. The limited 

variation across cohorts, space, and other characteristics that we documented in the previous 

sections provides an explanation for why the results across the literature are so consistent: the 

persistence in adult lifespan is low and there is limited heterogeneity (in an absolute sense) in its 

magnitude. 

These results might seem unintuitive. There are at least three reasons why, based on 

previous work, one might expect lifespan to be highly persistent across generations which are 

reflected in our simple model. First, it is well known that there are important genetic determinants 

of health, and genes are transmitted from parents to children. Second, SES is an important 

determinant of lifespan and SES is highly persistent across generations.25 Third, behaviors that 

determine health and SES are also passed on from parents to children. By passing on genetics, 

behaviors and SES, the family would, ex ante, appear to be an important determinant of health. On 

the other hand, measurement error in adult lifespan could lower our estimates of persistence and, 

as a result, meaningfully overstate the level of upwards and downward mobility. We investigate 

these issues now.  

 

a. Bounding the Role of Measurement Error 

The first issue we consider is the possibility that our low measures of intergenerational 

persistence in lifespan are an artifact of lifespan being poorly measured. While this is unlikely, 

given the consistently low estimates obtained in the existing literature using a variety of samples, 

we rule out this possibility by re-estimating our intergenerational correlations on a portion of our 

sample that includes only pairs in which both individuals (parent/child) have a death record 

attached to their Family Tree (see Table A.11). Despite the smaller sample size, the 

intergenerational persistence in lifespan is basically unchanged. To rule out that this is the result 

of low quality in the father’s death certificate information (which might be a concern given that, 

in the US, vital records were not well kept until the 1930s), we also compare sibling correlations. 

We see a small (e.g. roughly 11-17% in Panel A) increase in the correlations in the sample with 

 
25 In Table A.10, we show that, in our data, education, income and occupation are significant predictors of lifespan. 
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certificates, suggesting measurement error is relatively small and that correcting for it would not 

meaningfully change the main conclusions of our paper.26 Thus, the persistence in lifespan may 

be somewhat underestimated due to measurement error, but this error is not sufficiently large to 

produce measure of persistence in the range of those for SES we observe.  

 

b. Bounding the Contribution of Genes 

To better understand the role of genes in the intergenerational transmission of lifespan, we 

leverage the fact that we have data on both siblings and twins, who have varying degrees of genetic 

connections but who grow up in the same family (and hence the same environment). If genes are 

an important factor, we would expect the persistence in lifespan to be higher among identical twins 

than among siblings. In contrast, if genes are less important (or unimportant), we would expect the 

persistence in lifespan to be similar among siblings and identical twins. 

We have a large sample of twins – more than 100,000 pairs of twins with information on 

adult lifespan.27 Table 6 shows our results. Brother-brother lifespan coefficients are larger among 

twins (0.18) than among siblings (0.13), as expected. Similarly, sister-sister lifespan coefficients 

among twins (0.16) are larger than female sibling coefficients (0.10). This is true even though the 

association with father’s lifespan is almost identical among siblings and twins.  

Unfortunately, we cannot differentiate between identical and fraternal twins, which means 

our estimates still understate the role of genetics; however, since we know the share of same-sex 

twins who are identical in the population, we can adjust our estimates accordingly. Since 

approximately 50% of same-sex twins were identical during this period (Jeanneret and MacMahon 

1962), we can use this fraction, along with the same-sex twin and sibling coefficients, to determine 

the coefficients for identical twins.28 We calculate that, for identical male twins, the coefficient of 

the persistence in lifespan is 0.23 and for identical female twins the same coefficient is 0.22, 

approximately 50% to 70% larger than the same-sex sibling coefficients in lifespan. These 

identical twin correlations can likely be viewed as an upper bound on the heritability of lifespan, 

since identical twins share the same genetics, while parents and children share only half. But twins 

 
26 We also tried restricting attention to samples in which both parents and children have exact birth and death 
information (a measure of information quality) and for whom there are at least two sources attached to the tree 
documenting birth and death events with very little change in the results.  
27 We identify twins as siblings who are born to the same parents in the same year and month. 
28 For this computation we assume that the variance in lifespan is identical in the twin and sibling samples.  
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also have more similar home environments relative to non-twin siblings. The identical twin 

coefficients in lifespan are still below 0.25, suggesting that the genetic heritability of lifespan is 

relatively low (at least relative to other traits like height). 

Our conclusion regarding the moderate role for genes in explaining lifespan is consistent 

with the findings in other studies using twin designs, which find that genes explain about 25% of 

the variation in lifespan (see review by Dato et al. 2017).29 However, recent research looking to 

identify specific genes that affect lifespan has produced estimates that are significantly lower, 

consistent with the idea that even twin studies overstate the contribution of genes to outcomes.30 

Although this may seem surprising, a possible reason why genetic influences on lifespan are small 

is that there is little evolutionary pressure to transmit genes that increase lifespan beyond 

reproductive years (Lee 2003). 

 

c. Bounding the Contribution of Overall Family Factors and Assessing the Role of Luck 

Another explanation for the low level of persistence in lifespan is that the stochastic 

component of lifespan is larger than it is for other outcomes. Indeed, in a theoretical paper on this 

issue, Vaupel (1988) demonstrates this using a simulation of his frailty model, in which frailty is 

a measure of an individual’s health or disease susceptibility which determines their probability of 

dying. He shows that, even if the correlation in (unobserved) frailty between parents and children 

is exactly equal to 1, the correlation in lifespan can be close to zero if the stochastic component of 

lifespan is large. This would explain why the persistence in health (and its SES determinants) is 

higher than the persistence in lifespan we estimate. 

To investigate this, we conduct a variance decomposition of education and lifespan among 

siblings. Genetic influences, common environments, and parental investments that are common 

 
29Closely related is work by Hjelmborg et al. (2006) that uses Danish, Finnish, and Swedish twins born between 
1870 and 1910 and finds that genetic influences on lifespan are minimal prior to age 60 but increase thereafter. 
There is also important new work trying to disentangle the role of nature versus nurture in the intergenerational 
transmission of lifespan using data on adoptees. Björkegren et al. (2022) uses data on adoptees in Sweden to 
decompose this intergenerational transmission into nature or nurture. They find that the intergenerational association 
in mortality can be fully attributed to pre-birth factors; the association between the life expectancy of the biological 
parents of the children given up for adoption is as strong as for the children raised by their biological parents.    
30 The most recent genome-wide association study identified only 12 single nucleotide polymorphisms or SNPs (out 
of millions of possible SNPs candidates) that affect lifespan (Timmers et al. 2019). They report that an increase of 
one standard deviation in the polygenic score (weighted average) constructed using these genes increases lifespan by 
0.8 to 1.1 years—alternatively they find a 5 years-of-life difference between top and bottom deciles of the polygenic 
score. While this is a significant effect, it is modest relative to the standard deviation in lifespan (in our data, 
conditional on surviving to 25, the standard deviation in lifespan is about 16 years). 
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among all children are generally captured using family fixed effects or random effects. We can 

assess how well these fixed effects predict lifespan and education as a means of placing an upper 

bound on the influence of the family on these outcomes, following Björklund and Salvanes (2011).  

Table 7 presents the results for our sibling sample. Among all siblings, the correlation in 

lifespan is roughly 0.10, and the correlation in education is 0.55 (Panel A). If we regress an 

individual’s lifespan on all observables, not including parental or siblings’ lifespan, then the 

adjusted R-squared of the regression is quite small (0.039); when we estimate the same 

specification for education, the adjusted R-squared of the regression is 0.13 (Panel B).31 When we 

include family fixed effects, the adjusted R-squared increases substantially for education (to 0.59) 

but much less so for lifespan (0.131), demonstrating that families have a much more limited 

influence on lifespan than they have on education. Altogether, these findings suggest that Vaupel’s 

(1988) hypothesis is consistent with the data: the intergenerational persistence in lifespan is low 

because the stochastic component of lifespan is large, and larger than for health or SES outcomes.  

The intuition for this result is easily seen if we use a simplified version of how lifespan is 

determined. Suppose that the lifespan of an individual i from family j is given by 𝐿! = 𝐻! + 𝑒!, so 

that there are only two elements that matter: a person’s health and a stochastic shock, which we 

assume to be orthogonal to H. Suppose further that the parent and the son have exactly the same 

H (𝐻 is perfectly transmitted across generations) so that the correlation in H is exactly equal to 

one, but their lifespans are not equal because each of them receives a different shock e (drawn 

from the same distribution). If we regress the lifespan of the child on  the lifespan of the parent 

then the coefficient from this regression will be given by 𝑉(𝐻)/[𝑉(𝐻) + 𝑉(𝑒)] and it will not be  

equal to 1, it will suffer from “attenuation” (compared to the coefficient for health), and this 

attenuation is larger the larger the variance of the error term in the children’s lifespan 𝑉(𝑒).   

The coefficient we estimate is not biased, in a traditional sense however, because we are 

describing the persistence in lifespan across generations, not trying to uncover the persistence in 

health. As our model of welfare suggests, lifespan itself is an important input into welfare because 

it determines the number of periods that can be enjoyed independently from the health enjoyed in 

a given period. But the example illustrates that even if health or other determinants of lifespan that 

the family transmits like SES are highly correlated across generations, lifespan can be much less 

 
31 The controls include birth cohort of mother FE, birth cohort of father FE, child cohort FE, place of birth FE, 
indicators for race, sex, number of siblings, birth order, mother and father immigrant status. 
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correlated across generations if the variance of the stochastic term that determines lifespan is large. 

Our fixed effects results demonstrate that this is indeed the case.  

Why is this term so large for lifespan? A more realistic model of lifespan sheds light on 

this. In Lleras-Muney and Moreau (2022)’s model linking health and lifespan, individuals 

experience a health shock and a random (accident) shock every period – these shocks determine 

whether the individual dies in that period. An individual who lives 80 years will have received 160 

shocks by the time they die. By comparison, an individual who studies for 15 years will only 

receive 15 shocks potentially ending their education, and if they work for 60 years, they will have 

received 60 shocks to their income. Thus, in general, shocks will make a greater contribution to 

lifespan than to income, and a larger contribution to income than to education, making the 

intergenerational correlations larger in education than income, and larger for income than lifespan, 

exactly as we observe. 

 

VIII. Conclusion  

In this paper, we use newly available data from family trees that include over 26 million 

individuals born in the United States from 1880 to 1920, and their parents, to estimate the 

intergenerational transmission of lifespan. We find that absolute mobility in lifespan – the 

probability that a child lives longer than their same-sex parent – was large, but larger among 

women than men, and it trended in opposite directions for men and women in the cohorts we study. 

Relative mobility was also high. We find that the intergenerational persistence in lifespan (a 

measure of persistence rather than mobility) is strikingly low in a sample that includes more than 

30% of the adult population in the US at the time. Persistence is low across subgroups and across 

cohorts, which provides insight into why earlier, very different studies – often conducted with 

relatively small convenience samples – come to similar conclusions.  

The consistency of estimates across studies, samples, and cohorts implies that the results 

on relative persistence we obtain for the 1880-1920 cohorts may be applicable to cohorts born 

more recently. However, while persistence is low for all, there is substantial variation in these 

estimates across subgroups and across cohorts in relative terms. For example, the persistence of 

lifespan is 40-70% larger for those with low education. While these results suggest there may be 

notable heterogeneity, future work will need to carefully examine the extent to which the subgroup 

samples are representative and to examine why these estimates differ by SES. Nevertheless, since 
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our measures of persistence are low for all groups, and our measures of absolute mobility are large, 

our results suggest that information about parental ages at death is not particularly informative 

about the age at death of an individual.  Future research could investigate whether causes of death 

(which we do not observe) are more correlated across generations than ages at death.  

We also find that lifespan correlations are low (and much lower than SES correlations). 

We show this is partly because the stochastic component of lifespan is large relative to the 

contribution of family environments, which is not true for SES measures. However, the 

intergenerational transmission of risk – of which age at death is only one realization – might be 

much higher.  In fact, the intergenerational transmission of health, which might be a closer proxy 

for underlying risk, has been estimated to be substantially higher. Future research could attempt to 

estimate the intergenerational transmission of risk across individuals directly, a far more 

challenging enterprise.  

Finally, we document that incorporating lifespan into measures of welfare has large 

impacts on the intergenerational transmission of well-being: lifetime utility is less persistent than 

income across generations. An important direction for future research will be to better understand 

how different intergenerational measures are related, and to further combine absolute and relative 

measures of lifespan, health, and SES into a single metric of well-being to better understand its 

intergenerational transmission. 

In the process of conducting this analysis, we also document new patterns in lifespan, as 

our data begins with the cohort born in 1880, 20 years prior to when the SSA data begins. We 

show that the cohorts we study experienced large changes in lifespan. Most notably, we document 

that for men born in the end of the 19th century lifespan decline, whereas lifespan rose very 

substantially for women born during this period. Why men’s lifespan fell while women’s did not 

is the topic of other work, but these important sex differences in lifespan, combined with the 

striking differences in the patterns of absolute mobility by sex, highlight the importance of careful 

consideration of men and women separately and the need to better understand the sources of their 

divergent paths.  
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Table 1. Summary Statistics 
 

Variable  Full sample Sons  Daughters 
 Lifespan 72.9 70.2 76.1 
  (16.08) (15.43) (16.25) 
  

   

 Father's Average Lifespan 71.7 71.7 71.7 
  (13.55) (13.53) (13.58) 
  

   

 Mother's Average Lifespan 72.3 72.3 72.3 
  (15.89) (15.84) (15.96) 
  

   

Father’s birth year 1867 1867 1867 
 (14.09) (14.05) (14.15) 
Mother’s birth year 1872 1872 1872 
 (13.30) 13.25 (13.35) 
 Birth year 1901 1901 1901 
 (11.62) (11.62) (11.62) 
 White 0.99 0.99 0.99 
 Non-White 0.01 0.01 0.01 
  

   

 Northeast 0.15 0.15 0.15 
 Midwest 0.41 0.41 0.41 
 South 0.35 0.35 0.35 
 West 0.07 0.07 0.07 
 Immigrant Status 0.01 0.01 0.01 
 Father's Immigrant Status 0.13 0.13 0.13 
 Mother's Immigrant Status 0.10 0.10 0.10 
  

   

 Number of Siblings 2.89 2.87 2.91 
  (2.36) (2.35) (2.37) 
 Birth Order 2.39 2.39 2.40 
  (1.68) (1.68) (1.69) 
 Mother's Age at Child's Birth 29.1 29.1 29.2 
  (6.71) (6.69) (6.73) 
 Father's Age at Child's Birth 33.9 33.9 34.0 
  (8.02) (7.99) (8.05) 
 Education 9.57 9.45 9.70 
  (3.12) (3.21) (3.01) 
  

   

 Observations 26,134,161 13,944,386 12,189,775 
Notes: The sample includes all individuals who were age 25 or older in one of the US censuses from 
1900-1920, were successfully matched to the Family Tree, and for whom we could compute age at death. 
See text for further details on sample construction and sample selection.  



 
 

Table 2. Lifespan quintile transition matrix, by sex 
 

   Mother Quintile  
  1 2 3 4 5 
  

1 22.42 22.20 20.31 18.55 16.41 
       
 2 20.92 21.62 20.68 19.21 17.05 

Daughter 
Quintile 

      
3 20.22 20.57 20.91 20.60 19.29 
      

 4 18.96 18.86 19.91 20.92 21.58 
       
 5 17.47 16.73 18.18 20.70 25.65 

 
 

   Father Quintile  
  1 2 3 4 5 
  

1 22.88 22.23 20.42 18.70 16.54 
       
 2 21.31 21.49 20.61 19.37 17.38 

Son 
Quintile 

      
3 19.78 20.07 20.29 20.05 19.18 
      

 4 18.67 18.85 19.83 20.73 21.42 
       
 5 17.37 17.35 18.85 21.15 25.48 

 
Notes: The sample for the first matrix is restricted to mothers and daughters. The sample for the bottom matrix is 
restricted to fathers and sons. These matrices compare the portions of the son/father (mother/daughter) sample in a 
lifespan quintile given their father’s/son’s (mother’s/daughter’s) lifespan quintile. N= 13,944,386 for women and 
12,189,775 for men. 

 
 
 
 
 
 
 
 
 
 
 



 
 
 

Table 3. Intergenerational Persistence in Lifespan for Varying Child and Parent Pairings and 
Specifications 

 

 Outcome: Lifespan (Years)  
 (1) (2) (3) (4) (5) 

Model 
Lifespan  
(Years) 

No Controls 

(1) + Parent 
and Child 
Birth Year 

FE 

(2) + Parent 
and Child 
State of 
Birth FE 

(3) + Race 
and Birth 

Order 
Dummies 

# of Obs. 

Son/Father 0.089 0.090 0.087 0.087 13,944,386 
 (0.0003) (0.0003) (0.0003) (0.0003)  
Son/Mother 0.062 0.062 0.059 0.059 13,944,386 
 (0.0003) (0.0003) (0.0003) (0.0003)  
Son/Parents' Average 0.140 0.141 0.137 0.137 13,944,386 
 (0.0004) (0.0004) (0.0004) (0.0004)  
      
Daughter/Father 0.075 0.075 0.072 0.072 12,189,775 
 (0.0004) (0.0004) (0.0004) (0.0004)  
Daughter/Mother 0.081 0.074 0.071 0.071 12,189,775 
 (0.0003) (0.0003) (0.0003) (0.0003)  
Daughter/Parents' Average 0.150 0.142 0.138 0.138 12,189,775 
 (0.0005) (0.0005) (0.0005) (0.0005)  
       

Notes: Each cell separately provides the estimated regression coefficient in lifespan between the two individuals 
indicated in the row label. Errors are clustered at the family level. Column (1) includes no controls and regresses the 
child’s lifespan on the parent's lifespan. Column (2) includes dummies for the parent’s year of birth and for the 
child’s year of birth. Column (3) controls for dummies indicating the state of birth of the child and the state of birth 
of the parent. Column 4 includes race and birth order dummies.  



Table 4. Intergenerational Persistence in Lifespan for Varying Child and Parent Pairings and Measures 
 

 Outcome 

Model Lifespan  
(Years) Percentile Log 

Lifespan # of obs. 

Son/Father 0.090 0.090 0.076 13,944,386 
 (0.0003) (0.0003) (0.0003)  
Son/Mother 0.062 0.078 0.048 13,944,386 
 (0.0003) (0.0003) (0.0003)  
Son/Parents' Average 0.141 0.162 0.132 13,944,386 
 (0.0004) (0.0004) (0.0004)  
     
Daughter/Father 0.075 0.079 0.059 12,189,775 
 (0.0003) (0.0003) (0.0004)  
Daughter/Mother 0.074 0.094 0.056 12,189,775 
 (0.0003) (0.0003) (0.0003)  
Daughter/Parents' Average 0.142 0.166 0.128 12,189,775 

 (0.0004) (0.0004) (0.0005)  
     

Notes: Each cell separately provides the estimated regression coefficient in lifespan, log lifespan, or 
percentile lifespan between the two individuals indicated in the row label. The only controls included are 
birth year fixed effects for child, father and mother. Errors are clustered at the family level.  

 
 

  



Table 5. Sibling Correlations 
 

 (1) (2) (3) (4)  (5) (6)   (7) 

Sample: Individuals with data on lifespan, education, 
individual income and household income 

  
Individual with data on 
lifespan and education 

 

  
Individuals 
with data on 

lifespan 

Outcome: Adult 
lifespan Education Income HH Income  Adult lifespan Education  Father-child 

lifespan 
          
Brother/Brother 0.134 0.554 0.252 0.346  0.134 0.552  0.084 
 (0.001) (0.001) (0.017) (0.005)  (0.001) (0.001)  (0.001) 
 3,664,460 3,664,460 3,664,460 3,664,460  4,126,499 4,126,499  4,680,402 

          
Sister/Sister 0.106 0.603 0.171 0.358  0.105 0.594  0.069 
 (0.001) (0.001) (0.004) (0.005)  (0.001) (0.001)  (0.001) 
 2,402,338 2,402,338 2,402,338 2,402,338  3,102,766 3,102,766  3,693,559 
          
Sister/Brother 0.035 0.530 -0.110 0.329  0.035 0.526  0.077 
 (0.001) (0.001) (0.002) (0.002)  (0.0004) (0.001)  (0.0004) 
 5,747,644 5,747,644 5,747,644 5,747,644  6,988,569 6,988,569  8,183,995 

 
 
Notes: Each cell in this table is a separate regression of sibling adult lifespan (or of the indicated outcome) on sibling adult lifespan (or on the indicated outcome) 
including birth cohort fixed effects for each person. We include all unique possible sibling pairs as observations and cluster standard errors by family. In the first 
four columns, we only use sibling pairs for which information on all four outcomes is available for both siblings. Since occupation and income are often missing 
for women in the 1940 census, the next two columns include all sibling pairs for whom both education and lifespan are available. The final column includes the 
intergenerational persistence in lifespan between the children in the previous two columns and their fathers. Column 7 is restricted to people that both have a 
value for education (i.e. can be linked to the 1940 census) and have at least one sibling. This sample is about 13 million individuals. The reason these columns 
sum to more than 13 million is that there is overlap; sisters of sisters can also be sisters of brothers.  
  



 
Table 6. Adult Lifespan coefficients among siblings and twins 

 
 Siblings  Twins 

specification  

 
Adult lifespan 

sibling 
coefficient 

Father’s 
lifespan 

and child’s 
lifespan  

 
Adult lifespan 

sibling 
coefficient 

Father’s 
lifespan and 

child’s 
lifespan 

   
   

Brother/Brother 
sample 0.134 0.084 

 
0.183 0.078 

 (0.001) (0.001)  (0.006) (0.004) 
 4,126,499 4,680,402  31,335 62,670 
   

 
  

Sister/Sister 
sample 0.105 0.069 

 
0.162 0.07 

 (0.001) (0.001)  (0.007) (0.004) 
 3,102,766 3,693,559  28,020 56,040 
   

 
  

Sister/Brother 
sample 0.035 0.077 

 
0.05 0.062 

 (0.0004) (0.0004)  (0.005) (0.003) 
 6,988,569 8,183,995  45,628 91,256 
      

 

Notes: Each cell in this table is a separate regression. We include all unique possible sibling pairs as observations 
and cluster standard errors by family. The sample of twins includes all pairs of individuals born in the same year and 
month within the same family. Columns 1 and 3 are the coefficients when sibling (or twin) adult lifespan is 
regressed on sibling adult lifespan, including birth cohort fixed effects for each person. Columns 2 and 4 include the 
intergenerational persistence in lifespan between the children in the previous columns and their fathers. Sample sizes 
differ across columns because the number of unique sibling pairs in a family often differs from the number of 
children in a family (i.e. a family with 4 children has 6 sibling pairs).  



 
Table 7. The Contribution of Family Factors to lifespan and SES in Sibling Samples 

      
        Adult Lifespan Education 
Panel A: Raw sibling correlations    
correlation   

 0.096 0.546 
Panel B: Regression of adult lifespan, without family FE  
Adjusted R-squared    0.039 0.130 
Panel C: Regression of adult lifespan, with family FE   
Adjusted R-squared    0.131 0.592 

      
N       22,280,230 11,217,006 

 
Notes: In this table, we combine all siblings into a single sample. Panel A simply reports the raw sibling correlations 
in this sample, for reference. Panel B is a regression of the outcome (row header) on covariates: birth cohort of 
mother FE, birth cohort of father FE, child cohort FE, place of birth FE, indicators for race, sex, number of siblings, 
birth order, mother and father immigrant status. The regression does not include the siblings’ or the parents’ 
lifespan. Panel C adds a family fixed effect to this regression.  
 

  



 
Figure 1. Trends in adult life expectancy at age 25, by sex 

 

 
 

Notes: This figure shows a cohort’s adult lifespan (its average/expected age at death conditional on survival to age 
25) for cohorts born 1880 to 1920. Points corresponds to those who are observed in the 1900-1920 Censuses and in 
the Census-Family Tree matched data, or are calculated using the Social Security Administration’s Cohort Life 
Tables (https://www.ssa.gov/oact/HistEst/CohLifeTables/2020/CohLifeTables2020.html )
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Figure 2. Joint distribution of parent-child adult lifespan by sex, for children born 1880-1920 
a. Daughter-Mother distribution of age at death  

 
b. Son-father distribution of age at death 

 
Notes: Panel a shows the joint distribution of the age at death among women born 1880-1920 who survived to age 
25, and the age at death of their mothers. Panel b shows the joint distribution for men and their fathers. The black 
line is a 45-degree line. Each square shows the percent of data falling in that region; for example, 0.1 means that 0.1 
percent of the data is in that area. 
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Figure 3. Heterogeneity in mobility in adult lifespan, by sex and group 

a. Absolute mobility 

 
b. Relative persistence 

 
 Notes: In Panel a, each circle reports the absolute mobility measure (the probability a child lives longer than their 
same-sex parent) for each of the indicated subsamples, defined by education level, immigrant status, parental 
immigrant status, family size, birth order or birth state. Panel b reports the intergenerational persistence in lifespan 
obtained from a separate regression using only the indicated subsample, defined by education level, immigrant 
status, parental immigrant status, family size, birth order or birth state. Each regression includes birth cohort fixed 
effects for each person. Standard errors are clustered at the family level. Census Tree data. 



 
Figure 4. Trends in absolute and relative mobility, by sex and birth cohort in the US 

Percent of children living longer than same-sex parent 
 

 
Notes: Each dot is the fraction of children in the sample whose age at death was greater than their parent’s age at 
death (conditional on both parents and children living to age 25). Standard errors are included for each estimate in 
the figure, but they are too small to see. Census Tree data.



 
Figure 5. Trends in relative mobility in lifespan 

 

 
Notes: Upward mobility is the share of children whose parents where at the bottom 20 percent of the sex-specific adult lifespan distribution who end up in the top 
20 percent of the sex-specific adult lifespan distribution in their cohort. Downward mobility is the share of children born to parents in the 20 percentile of the 
adult lifespan distribution who end up in the bottom 20 percent of the sex-specific adult lifespan distribution in their cohort. Persistence at the top is the share of 
children born to parents in the top 20 percent who also end up at the top 20 percent of the distribution. Persistence at the bottom is the share is children born to 
parents at the bottom 20 percent who also end up in the bottom 20 percent of the adult lifespan distribution of their cohort. Census Tree data.



Figure 6. Intergenerational Persistence in Lifespan using Different Age Restrictions as Cutoffs 
 

 
 

Notes: Each triangle and circle correspond to a coefficient from a regression of the child’s lifespan on the parent’s 
lifespan, estimated separately. The specifications in these figures include birth cohort fixed effects for parent, child, 
and sibling. The age restriction is applied to both parent and child. For example, if the age restriction on the x-axis is 
45 it means we restrict attention to parent-child pairs in which both the parent and the child survive to age 45. 
Census-Tree data.



Figure 7. Changes in the Intergenerational Persistence in Lifespan by Level and Percentile for 
individuals born 1880-1920 

a. Level 

 
b. Percentile 

 
Notes: In this figure, for each birth cohort, we estimate the intergenerational coefficient of lifespan for son/father 
pairs, daughter/mother pairs, and the coefficients between the child’s lifespan and the average lifespan of both 
parents. Each point corresponds to the regression coefficient of a regression of the child’s lifespan on a measure of 
the parent’s lifespan controlling for birth cohort fixed effects for the parent. We estimate the regression separately 
for each birth cohort. Intergenerational lifespan coefficients are estimated using those observations in our dataset in 
which both parents and children lived to at least age 25. 

 
 
 



Figure 8. Intergenerational correlations occupation, lifespan and wellbeing 
 

 
Notes: This figure uses data that is the intersection of our sample with lifespan and the father-son sample from 
Buckles, Price, and Ward (2023) who report the occupation estimates for census years only. Birth cohorts are binned 
by decade (i.e. 1880-1889 is the 1880 cohort). Standard errors are present, but too precise to be legible outside of the 
1880 cohort. 
  



Figure 9: Relationship between the Intergenerational Associations in Adult Lifespan and Intergenerational Associations in 
Occupation-based Income Percentiles among Men born 1880-1920  

 

  
Notes: These figures plot the regression coefficients in lifespan on the y-axis against the coefficient in occupation-based percentile on the x-axis for a given 
cohort (left panel) or birth state (right panel). We use the (inverse of the) variance of the occupation-coefficient as weights in these regressions, though the 
unweighted results are very similar. The sample is restricted to men and fathers who have data on both and who survived to age 25.  The line is the best linear fit, 
and the estimated slope and its standard error are given in the box in top right of each panel. 



 
 
Figure 10. Correlations Across Cohorts and States in the Sibling Associations in Adult Lifespan 

and the Sibling Associations in Education 

 
 
Notes: These figures plot the sibling regression coefficients in lifespan on the y-axis against the sibling regression 
coefficients in education on the x-axis for a given cohort or state.  Fitted lines are weighted by the in-sample 
population of the relevant state or cohort. We use the (inverse of the) variance of the education coefficient as 
weights in these regressions , though the unweighted results are very similar. We restrict attention to individuals 
surviving to age 60. 
 
 
 
 
 
 
 

 
 



 
 

Figure 11. Comparison to Previous Estimates of Intergenerational Persistence in Lifespan 
 

 
Notes: The figure reports the estimates from various publications. The estimates from this paper come from Table 4 
and Appendix Table 3 and refer to correlations/coefficients that do not control for any covariates to make them most 
comparable to previous estimates. We also report the coefficients that are derived from the age 25+ sample. 
Estimates from other papers were chosen to be as close as possible as the ones reported here, in terms of the age 
restrictions and method. Several papers listed in Appendix Table A1 provide estimates that are not directly 
comparable and are not included here as a result.  At the end of Table A.1, we specify the exact location of each 
estimate in the original publication. 
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Table A.1. Previous estimates of the intergenerational correlations in lifespan 
 

Paper Correlation Estimate SE Sample size Population Cohort 

Panel A: Parent Child correlations 

Beeton and Pearson 
(1899) 

Father-Son (“Peerage”): 
0.115 

Father-Son (“Landed 
Gentry”): 0.142 

Father-Son (“Peerage”): 
0.021 

Father-Son (“Landed 
Gentry”): 0.021 

Father-Son: 1,000 
pairs (Peerage) and 
1000 pairs (Landed 

Gentry) 

European 
aristocracies 

(“Peerage” and 
“Landed Gentry”) 

 

Beeton and Pearson 
(1901) 

Father-Son: 0.13  
Father-Daughter: 0.13 

Mother-Son: 0.13 
Mother-Daughter: 0.15 

Father-Son: 0.02 
Father-Daughter: 0.02 

Mother-Son: 0.02 
Mother-Daughter: 0.02 

Father-Son: 1000 pairs 
Father-Daughter: 1156 

pairs 
Mother-Son: 1220 

pairs 
Mother-Daughter: 

1064 pairs 

"Society of 
Friends” from 

Britain 
 

Pearl (1931) Father-Son: 0.061  
Father-Daughter: 0.047 

Father-Son: 0.01  
Father-Daughter: 0.011 

Father-Son: 4407 pairs  
Father-Daughter: 3689 

pairs 
New England 1649-1921 

Wyshak (1978) 

Father-Son: 0.071 
Father-Daughter: 0.064 

Mother-Son: 0.08 
Mother-Daughter: 0.059 

 

Father-Son: 6343 pairs  
Father-Daughter: 3420 

pairs 
Mother-Son: 5505 

pairs 
Mother-Daughter: 

3125 pairs 

Salt Lake City, 
Utah 

18th and 19th 
centuries, but 
born before 

1850 

Phillipe (1978) 

Father-Son: 0.043- 
0.129 

Father-Daughter: -
0.116-0.190 

Mother-Son: -0.010-
0.194 

 

Father-Son: 128 pairs 
Father-Daughter: 114 

pairs 
Mother-Son: 134 pairs 
Mother-Daughter: 132 

pairs 

Isle-aux-Coudres, 
Quebec, Canada 

parents married 
1820-1899 



Mother-Daughter: 
0.106-0.241 

Mayer (1991) 

Father-Son: 0.1- 0.3 
Father-Daughter: -0.12-

0.21 
Mother-Son: -0.13-0.32 
Mother-Daughter: 0.17-

0.21 
(shows full 95% CI of 

estimates) 

 13,656 individuals 

6 New England 
families who are 

white, Anglo-Saxon 
and Protestant 

immigrants from 
England 

1650-1874 

Kerber et al (2001) Parent-offspring 
correlation: 0.074  19,575 pairs Utah 1870-1907 

Mitchell et al (2001) 

Father-Son: 0.049 
Father-Daughter: 0.106 

Mother-Son: 0.099 
Mother-Daughter: 0.123 

 

Father-Son: 709 pairs 
Father-Daughter: 610 

pairs 
Mother-Son: 614 pairs 
Mother-Daughter: 586 

pairs 

Amish (Lancaster 
County, 

Pennsylvania) 
1749-1890 

Gavrilov and 
Gavrilova (2001) 

Father-Sons: 0.09-0.17 
Father-Daughter: 0.06-

0.295 
Mother-Son: 0.035-0.11 

Mother-Daughter: 
0.055-0.114 

Father-Son: 0.01-0.05 
Father-Daughter: 0.02-

0.07 
Mother-Son: 0.01-0.05 
Mother-Daughter: 0.01-

0.07 

Father-Son: 11,613 
pairs 

Father-Daughter: 
5,025 pairs 

Mother-Son: 11,613 
pairs 

Mother-Daughter: 
5,025 pairs 

European 
aristocracies 1800-1880 



Kemkes-Grottenhaler 
(2004) 

Father-Son: 0.051-0.072 
Father-Daughter: 0.066-

0.13 
Mother-Son: 0.059-

0.131 
Mother-Daughter: 

0.103-0.136 

 

Father-Son: 4442 pairs 
(1015 if 50+)  

Father-Daughter: 3910 
pairs (945 if 50+) 
Mother-Son: 4404 
pairs (1021 if 50+) 
Mother-Daughter: 

3885 pairs (948 if 50+) 

Germany 1650-1927 

Piraino et al (2014) 

Father-Son: 0.173 
(0.076 if conditioned on 
child’s survival post 15) 
Father-Daughter: 0.165 
for daughter-father pairs 
(0.075 if conditioned on 
child’s survival post 15) 

 
Father-Son: 6059 pairs  
Father-Daughter: 3995 

pairs 

Cape Colony, South 
Africa 

Born between 
1652 - 1850 

Parman (2017) 
Father-Son: 0.20-0.36 

Mother-Daughter: 0.19-
0.32 

Father-Son: 0.06-0.12 
Mother-Daughter: 0.06-

0.12 

Father-Son: 585 pairs 
Father-Daughter: 424 

pairs 

Meckelenburg 
county, North 

Carolina 

Deaths in 
1934-1975 

(parents from 
censuses 1860-

1910) 

Kaplanis et al (2018) Parent-child: 0.122 Parent-child: 0.004 Parent-child: 130,000 
pairs US parents born 

1650-1850 

Mourits et al (2020) 

Offspring of top 10% 
lived fathers have a 

survival advantage of 
17%, of top 10% of 

mothers have advantage 
of 20% and of both 
parents have 25% 

 

101,577 individuals 
(16,905 families) 

Parent-Son: 52367 
pairs 

Parent-Daughter: 
49210 pairs 

Zeeland province, 
Netherlands 

1812-1886 for 
children, 1741-

1844 for 
parents 



Minardi et al. (2024) 

Father-Son: 0.068  
Father-Daughter: 0.067 

Mother-Son: 0.054 
Mother-Daughter: 0.064 

Father-Son: 0.003 
Father-Daughter: 0.004 

Mother-Son: 0.002 
Mother-Daughter: 0.003 

Father-Son: 208,784 
pairs 

Father-Daughter: 
142,100 pairs 

Mother-Son: 208,784 
pairs 

Mother-Daughter: 
142,100 pairs 

US 1690-1910 

 
 
 
Panel B: Sibling correlations 

Beeton and Pearson 
(1899) Brother-Brother: 0.26 Brother-Brother: 0.02 

Brother-Brother: 1000 
pairs (“Foster’s 
Peerage” group) 

European 
aristocracies  

Beeton and Pearson 
(1901) 

Brother-Brother: 0.28 
Brother-Sister: 0.23 
Sister-Sister: 0.33 

Brother-Brother: 0.02 
Brother-Sister: 0.01 
Sister-Sister: 0.02 

Brother-Brother: 1000 
pairs 

Brother-Sister: 1947 
pairs 

Sister-Sister: 1050 
pairs 

"Society of 
Friends"from 

Britain 
 

Kerber et al (2001) Sibling-sibling: 0.107  42,812 pairs Utah 1870-1907 

Phillipe (1978) 

Brother-Brother: -0.001-
0.263 

Brother-Sister: 0.139 
Sister-Sister: 0.161-

0.315 

 

Brother-Brother: 125 
pairs 

Brother-Sister: 176 
pairs 

Sister-Sister: 110 pairs 

Isle-aux-Coudres, 
Quebec, Canada 

parents married 
1820-1899 

Piraino et al (2014) 

Brother-Brother: 0.153 
(0.08 if conditioned on 
survival post 15) Sister-
Sister: 0.193 (0.151 if 

 122,766 Cape Colony, South 
Africa 1652 - 1850 



conditioned on survival 
post 15) 

Sibling-Sibling: 0.171 
(0.086 if conditioned on 

survival post 15) 

Wyshak (1978) Brother-Brother: 0.077 
Sister-Sister: 0.101  

Brother-Brother: 5584 
pairs 

Sister-Sister: 2614 
pairs 

Salt Lake City, 
Utah 

18th and 19th 
centuries, but 
born before 

1850 

Mitchell et al (2001) 
Brother-Brother: 0.142 
Brother-Sister: 0.082 
Sister-Sister: 0.056 

 

Brother-Brother: 700 
pairs 

Brother-Sister: 1416 
pairs 

Sister-Sister:  709 
pairs 

Amish (Lancaster 
County, 

Pennsylvania) 
1749-1890 

Panel C: Twin correlations 

Herskind et al. (1996) 
Male-male twin: 0.26 
Female-female twin: 

0.23 
 

Male-male MZ twin 
pairs: 513 

Male-male DZ twin 
pairs: 895 

Female-female MZ 
twin pairs: 520 

Female-female DZ 
twin pairs: 944 

Danish same sex 
twin pairs 1870-1900 

Ljunquist et al. (1998) 

Male-male MZ twin 
pairs: 0.33 (reared 

together), 0.01 (reared 
apart) 

Male-male DZ twin 
pairs: 0.11 (reared 

CI: 
Male-male MZ twin 

pairs: 0.26-0.39 (reared 
together), -0.11-0.23 

(reared apart) 
Male-male DZ twin 

pairs: 0.06-0.15 (reared 

Male-male MZ twin 
pairs: 1567 (reared 

together), 82 (reared 
apart) 

Male-male DZ twin 
pairs: 2814 (reared 

Swedish Twin Pairs 1886-1925 



together), 0.08 (reared 
apart) 

Female-female MZ twin 
pairs: 0.28 (reared 

together), 0.15 (reared 
apart) 

Female-female DZ twin 
pairs : 0.12 (reared 

together), 0.01 (reared 
apart) 

together), -0.11-0.27 
(reared apart) 

Female-female MZ twin 
pairs: 0.22-0.34 (reared 

together), 0.06-0.23 
(reared apart) 

Female-female DZ twin 
pairs : 0.08-0.15 (reared 

together), -0.05-0.07 
(reared apart) 

together), 169 (reared 
apart) 

Female-female MZ 
twin pairs: 1910 

(reared together), 97 
(reared apart) 

Female-female DZ 
twin pairs : 3589 

(reared together), 277 
(reared apart) 

Hjelmborg et al. 
(2006) 

Danish twins: 
Male-male MZ twin 

pairs: 0.15 (0.39 if >60) 
Male-male DZ twin 

pairs: 0.10 (0.21 if >60) 
Female-female MZ twin 
pairs: 0.18 (0.30 if >60) 
Female-female DZ twin 
pairs: 0.08 (0.19 if >60) 

Swedish and Finnish 
twins: 

Male-male MZ twin 
pairs: 0.43 

Male-male DZ twin 
pairs: 0.15 

Female-female MZ twin 
pairs: 0.32 

Female-female DZ twin 
pairs: 0.17 

Danish twins: 
Male-male MZ twin 

pairs: 0.04 (0.06 if >60) 
Male-male DZ twin 

pairs: 0.04 (0.05 if >60) 
Female-female MZ twin 
pairs: 0.04 (0.06 if >60) 
Female-female DZ twin 
pairs: 0.03 (0.05 if >60) 

Swedish and Finnish 
twins: 

Male-male MZ twin 
pairs: 0.03 

Male-male DZ twin 
pairs: 0.03 

Female-female MZ twin 
pairs: 0.03 

Female-female DZ twin 
pairs: 0.02 

Danish twins: 
Male-male MZ twin 

pairs: 851 
Male-male DZ twin 

pairs: 1500 
Female-female MZ 

twin pairs: 862 
Female-female DZ 

twin pairs: 1607 
Swedish and Finnish 

twins: 
Male-male MZ twin 

pairs: 829 
Male-male DZ twin 

pairs: 1380 
Female-female MZ 

twin pairs: 987 
Female-female DZ 

twin pairs: 1930 

Danish, Finnish and 
Swedish twins 

1870-1910 for 
Danish births, 
1886-1925 for 
Swedish births, 
1880-1910 for 
Finnish births 



Wyshak (1978) 

Male on male twin: 
0.106 

Male on female twin: 
0.080 

Female on male twin: 
0.111 

Female on female twin: 
0.091 

 

Male on male twin 
pairs: 2100 

Male on female twin 
pairs: 1224 

Female on male twin 
pairs: 672 

Female on female twin 
pairs: 1059 

Salt Lake City, 
Utah 

18th and 19th 
centuries, but 
born before 

1850 

Kerber et al (2001) 
Like-sex twins: 0.249 
Opposite-sex twins: 

0.078 
 

Like-sex twins: 472 
pairs 

Opposite-sex 
twins:238 pairs 

Utah 1870-1907 

Panel D: Spousal correlations 

Phillipe (1978) 0.042-0.121  154 pairs Isle-aux-Coudres, 
Quebec, Canada 

parents married 
1820-1899 

Parman (2017) 0.142-0.179 0.038-0.047 619 pairs 
Meckelenburg 
county, North 

Carolina 

Deaths in 
1934-1975 

Mitchell et al (2001) 0.01  312 pairs 
Amish (Lancaster 

County, 
Pennsylvania) 

1749-1890 

Wyshak (1978) 0.127  5457 pairs Salt Lake City, 
Utah 

18th and 19th 
centuries, but 
born before 

1850 

Panel E: Grandparent Correlations 



Kerber et al (2001) Grandparent-grandchild: 
0.015  25,903 pairs Utah 1870-1907 

Piraino et al (2014) 

Grandparent-grandchild: 
-0.022-(-0.012) 

Great-Grandparent-
great-grandchild: 0.021 

All insignificant 

Grandparent-
grandchild: 2601 pairs 

Great-Grandparent-
great-grandchild: 1837 

pairs 

Cape Colony, South 
Africa 

Born between 
1652 - 1850 

 
 
We use the following estimates from these papers to create Figure 10 in the paper. 
 
• Father-Son (Mother-Daughter) correlation for Mayer (1991) is calculated in Page 53 (Page 53), which use cohorts of immigrants from England born between 

1650 and 1874, without any age restriction. 
• Father-Son (Mother-Daughter) correlation for Gavrilov and Gavrilova (2001) is from Table 5 (Table 6), which uses 11613 (5025) pairs drawn from 

European aristocracies born 1800-1880, with the age restriction of surviving until 30.   
• Father-Son (Mother-Daughter) correlation for Parman (2017) is from Table 11 (Table 11), which uses 585 (424) pairs drawn from cohorts from 

Meckelenburg County, North Carolina who died between 1934-1975, without the age restriction.  
• Father-Son correlation for Piraino et al. (2014) is calculated in Page 112, which uses 6059 pairs drawn from cohorts born 1652-1850 in Cape Colony, South 

Africa, with the age restriction of surviving until 15.  
• First estimate for Father-Son correlation for Beeton and Pearson (1899) is calculated in Page 297, which uses 1000 pairs drawn from European aristocracies 

(“Landed Gentry”) cohorts, with the age restriction of surviving until 25.   
• Second estimate for Father-Son correlation for Beeton and Pearson (1899) is calculated in Page 297, which uses 1000 pairs drawn from European 

aristocracies (“Peerage”) cohorts, with the age restriction of surviving until 20.  
• Father-Son (Mother-Daughter) correlation for Beeton and Pearson (1901) is from Table A (Table A), which uses 1000 (1064) pairs drawn from cohorts from 

Britain (“Society of Friends”, with the age restriction of surviving until 20.  
• Father-Son (Mother-Daughter) correlation for Kemkes-Grottenhaler (2004) is from Table 6 (Table 6), which uses 4442 (3885) pairs drawn from cohorts 

born between 1650 and 1927 in Germany, without the age restriction.  
• Father-Son (Mother-Daughter) correlation for Wyshak (1978) is from Table 2 (Table 2), which uses 6343 (3125) pairs drawn from cohorts born before 1850 

in Salt Lake City, Utah, without the age restriction.  
• Father-Son correlation for Pearl (1931) is from Table 11, which uses 4407 pairs drawn from cohorts born between 1649 and 1921 in New England, without 

the age restriction.  
• Father-Son (Mother-Daughter) correlation for Mitchell et al. (2001) is from Table 3 (Table 3), which uses 709 (586) pairs drawn from cohorts born between 

1749 and 1890 in Lancaster County, Pennsylvania, with the age restriction of surviving until 30.  



• Father-Son (Mother-Daughter) correlation for Phillipe (1978) is from Table 4 (Table 4), which uses 46 (57) pairs drawn from cohorts with parents married 
between 1820-1899 in Isle-aux-Coudres, Quebec, Canada, with the age at death of offspring before age 20 years.  

• Father-Son (Mother-Daughter) correlation for Minardi et al. (2024) is from Table A.5 (Table A.5), which uses 208,784 (142,100) pairs drawn from cohorts 
born in the United States between 1690 and 1910, with the age restriction of surviving until 30.  

• The correlation for Kaplanis et al. (2018) is from Supplementary Materials page 13, which uses about 130,000 trios of parent-child. It is calculated using 
parents' average and child lifespan and they do not report the correlations for Mother-Daughter and Father-Son pairs. The data come from Geni.com where 
individual users can upload family tree information.



 

Table A.2. Comparing Tree data with SSA data by cohort 
 

 Sample  SSA   Difference   
Age Male Female Male Female Male Female 

       
1910 Cohort 

25 45.5 51.77 43.34 49.62 2.16 2.15 
40 32.84 39.54 31.2 37.64 1.64 1.9 
60 17.49 22.92 16.34 21.58 1.15 1.34 
80 7.5 9.57 6.86 8.93 0.64 0.64 
100 2.05 2.09 1.97 2.25 0.08 -0.16 

       
1900 Cohort 

25 46.64 53.66 45.12 52.07 1.52 1.59 
40 33.74 40.58 32.28 39.09 1.46 1.49 
60 18.2 23.43 17.12 22.39 1.08 1.04 
80 7.27 9.32 7.02 9 0.25 0.32 
100 1.36 1.56 1.9 2.19 -0.54 -0.63 

       
Notes: The table shows the remaining years of life at different ages. Difference calculated (SSA-CensusTree 
sample), giving a difference of sample from population. The cohort life tables produced by the Social Security 
Administration (SSA) are available here: https://www.ssa.gov/oact/NOTES/pdf_studies/study120.pdf.  
Kaplan-Meier estimates are produced using the methods described here: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059453/ 
 
  



 
Table A.3. Comparison of Matched Sample and Full Census Sample 

Mean Values 
 

Variable Matched Analysis 
Data 

Unmatched  
Census data  

Lifespan 73.0  
Female 0.47 0.52 
Birth Year 1901 1898 
White 0.99 0.82 
Black 0.01 0.14 
Northeast  0.15 0.24 
Midwest  0.41 0.25 
South  0.35 0.35 
West  0.07 0.04 
Immigrant  0.01 0.08 
Father is Immigrant  0.13 0.24 
Mother is Immigrant  0.10 0.19 
Observations 26,134,161 960,504,392 

 
Notes: The estimates in this table compare the mean values of individuals who were age 25 or older in one of the US 
censuses from 1900-1920 based on whether or not we were able to match the individual to information on their 
lifespan and the lifespan of both of their parents.  
 
 
 
 
 
 
 
 
 

 
  



 
 

Table A.4. Raw Correlations in Lifespan Across Generations  
 

 
Outcome  

Model Lifespan  
(Years)  Percentile Log Lifespan Observations 

Son/Father 0.08  0.09 0.06 13,944,386 
Son/Mother 0.06  0.08 0.05 13,944,386 
Son/Parents' Average 0.10  0.12 0.08 13,944,386 
      
Daughter/Father 0.06  0.08 0.05 12,189,775 
Daughter/Mother 0.08  0.09 0.06 12,189,775 
Daughter/Parents' Average 0.10  0.12 0.08 12,189,775 
      
Father/Mother 0.05  0.05 0.05 10,251,695 
 
Notes: Each cell separately provides the raw correlation in lifespan, log lifespan, or percentile lifespan between the 
two individuals indicated in the row. 
 
  



Table A.5. Assessing the Impact of WWI, WWII and the 1918 Flu Pandemic 
  

  Outcome: Lifespan (Years)     
  (1)  (2)  (3)  (4)  (5)  (6)  (7)  

Model  
Lifespan   
(Years)  

No 
Controls  

(1) + 
Parent and 

Child 
Birth Year 

FE 

(2) + 
Parent 

and Child 
State of 

Birth FE  

(3) + 
Race and 

Birth 
Order 

Dummies 

# of Obs.  

(4) + 
Without 

Key 
Death 
Years  

# of Obs.  

Son/Father  0.089  0.090  0.087  0.087  13,944,386  0.088  11,295,899 

  
(0.0003)  (0.0003)  (0.0003)  (0.0003)    (0.0004)  

  
Son/Mother  0.062  0.062  0.059  0.059  13,944,386  0.060   11,295,899 

  
(0.0003)  (0.0003)  (0.0003)  (0.0003)    (0.0003)

  
  

Son/Parents' Average  0.140  0.141  0.137  0.137  13,944,386  0.138   11,295,899 

  
(0.0004)  (0.0004)  (0.0004)  (0.0004)    (0.0005)

  
  

                
Daughter/Father  0.075  0.075  0.072  0.072  12,189,775  0.072  9,956,998  

 
(0.0004)  (0.0004)  (0.0004)  (0.0004)    (0.0004)

  
  

Daughter/Mother  0.081  0.074  0.071  0.071  12,189,775  0.071  9,956,998  
  
 
Daughter/Parents’ 
Average  

(0.0003) 
 

0.150 
(0.0005)  

(0.0003)  
 

0.142 
(0.0005) 

(0.0003) 
 

0.138 
(0.0005)  

(0.0003) 
 

0.138 
(0.0005)  

 
 

12,189,775  

(0.0003)
  

0.137 
(0.0005) 

 
 

9,956,998  

               
Notes: Each cell separately provides the estimated regression coefficient in lifespan between the two individuals 
indicated in the row label. Standard errors are clustered at the family level. Column (1) includes no controls and 
regresses the child’s lifespan on the parent's lifespan. Column (2) includes dummies for the parent’s year of birth 
and for the child’s year of birth. Column (6) drops observations if the mother, father, or child died in one of the 
following years: 1918, 1919, 1920, 1942, 1943, and 1944, which is done to account for deaths from the World Wars 
and the Spanish flu pandemic. 
  



Table A.6. Sensitivity to Alternative Censoring Rules 

  

Both individuals live 
to age 25 

 Children live to age 
of parent at child’s 

birth 

Son/Father 0.0901 0.0868 
 (0.0003) (0.0003) 
 13,944,386 13,481,225 
   

Daughter/Mother 0.0735 0.0698 
 (0.0003) (0.0003) 
 12,189,775 12,033,201 

Notes: The specifications in these figures include birth cohort fixed effects for 
parent and child. These estimates correspond to column 2 of table 3.  

 
  



 
Table A.7. Summary Statistics of Sibling Subsample 

 

 
Census based sample matched to 

FamilySearch, cohorts born 1880-1920 

 
 

Full Sample 
 

 
Siblings 

 
Average Lifespan  72.97 75.601 
 (16.09) (13.65) 
Father's Lifespan  71.66 72.25 
 (13.56) (13.24) 
Mother's Lifespan  72.31 72.84 
 (15.89) (15.50) 
Birth Year 1901 1901 
White 0.99 0.99 
Black 0.01 0.004 
   
Place of birth and ancestry   
Northeast  0.15 0.14 
Midwest  0.41 0.42 
South  0.35 0.35 
West  0.07 0.08 
Immigrant Status 0.01 0.01 
Father's Immigrant  0.10 0.11 
Mother's Immigrant  0.13 0.14 
   
Family characteristics   
Siblings 2.89 3.42 
 (2.36) (2.21) 
Birth order 2.39 2.65 
 (1.68) (1.72) 
Age mother at birth 33.93 34.01 
 (8.02) (7.83) 
Age father at birth 29.13 29.21 
 (6.71) (6.58) 
Observations 26,134,160 13,107,678 

 
Notes: The estimates in this table compare individuals who were age 25 or older in one of the US censuses from 
1900-1920 for whom we have information about their own lifespan and the lifespan of both of their parents. 
Standard deviations in parentheses.  



Table A.8. Sibling correlations for outcomes in the 1940 census 
 

 (1) (2) (3) (4) (5) (6)  (7) 

 

Individuals with data on lifespan, education, 
individual income and household income  

Individual with data 
on lifespan and 
education 

Individual
s with 
data on 
lifespan 

Model Adult 
Lifespan Education Income HH Income Adult 

Lifespan  
Education  IGPLF 

        
Brother/Brother 0.141 0.553 0.260 0.347 0.141 0.551 0.094 
 3,664,460 3,664,460 3,664,460 3,664,460 4,126,499 4,126,499 4,680,402 
 
Sister/Sister 0.106 0.593 0.167 0.359 0.106 0.585 0.098 
 2,402,338 2,402,338 2,402,338 2,402,338 3,102,766 3,102,766 3,693,559 
 
Sister/Brother 0.037 0.529 -0.104 0.328 0.037 0.525 0.094 
 5,747,644 5,747,644 5,747,644 5,747,644 6,988,569 6,988,569 8,183,995 
 

Notes: Each cell in this table is a separate correlation. In the first four columns, we only use sibling pairs for which 
information on all four outcomes is available for both siblings. Since occupation and income are often missing for women in 
the 1940 census, we include the next two columns and we restrict the sample to just those sibling pairs for which both 
education and lifespan are available. The final column includes the intergenerational persistence in lifespan between the 
children in the previous two columns and their fathers.   

  



Table A.9. Lifetime utility computations among men in the sibling sample 
 

 (1) (2) (3) (4)  (5) 

Outcome 
 

Adult 
lifespan 

 
Occupation 
percentile 

Annual  
HH Income 

Wellbeing 
𝑢(𝑦)
= 𝐿𝐸!"
∗ 𝑝𝑐𝑡(𝑦) 

Wellbeing 
𝑢(𝑦)
= 𝐿𝐸!"
∗ √ℎℎ	𝑖𝑛𝑐 

Brother/
Brother 0.1372 0.3263 0.3289 0.4247 

 
0.4663 

 (0.001) (0.001) (0.0036) (0.0012) (0.0013) 
 1,194,765 1,194,765 1,194,765 1,194,765 1,194,765 
      
Father/ 
Son 

0.0979 0.3504  0.281  
(0.001) (0.0012)  (0.0013)  

 1,570,255 1,570,255  1,570,255  
 

Notes: Each cell reports the coefficient of regression of a child’s outcome on their sibling’s outcome. There is one 
observation per sibling pair. The sample includes only siblings without missing data in the 1940 census on all outcomes 
and who survived to age 25.  The wellbeing measures in columns 4 and 5 are computed as specified in the column 
where “pct(y)” refers to the occupation percentile (used in column 2) and “hh inc” refers to household income (used 
in column 3). This sample is smaller than our sibling samples in Table 5 because we only include individuals who 
have non-missing data on occupation and whose fathers also have occupation. In Table 5 we only restrict to parents 
having lifespans.  

 

  



Table A.10. Accounting for SES in the 1940 Matched Sample 
 

Sample sample with education 
sample with 
education, income 
and occupation 

 sample with 
education 

sample with 
education, income 
and occupation 

Parental Lifespan Father    Mother  

Panel A: Son’s lifespan         
Parental Lifespan 0.080 0.079 0.078 0.078  0.055 0.052 0.052 0.052 

 (0.0004) (0.0004) (0.0004) (0.0004)  (0.0004) (0.0004) (0.0004) (0.0004) 
Child’s Education  0.246 0.248 0.267   0.241 0.246 0.267 

  (0.002) (0.002) (0.002)   (0.002) (0.002) (0.002) 
          

             Income/100   -0.001 0.006    -0.004 0.003 
   (0.001) (0.01)    (0.001) (0.001) 
          

            Occupation    -0.020     -0.022 
    (0.001)     (0.001) 
          

R2 0.023 0.026 0.026 0.026  0.021 0.024 0.024 0.024 
N 7,055,371 6,604,623  7,055,371 6,604,623 
Panel B: Daughter’s lifespan 
        

Parental Lifespan 0.067 0.064 0.064 0.064  0.064 0.058 0.057 0.057 
 (0.0004) (0.0004) (0.001) (0.001)  (0.0004) (0.0004) (0.0004) (0.0004) 

Child’s Education  0.391 0.383 0.382   0.374 0.369 0.369 
  (0.002) (0.002) (0.002)   (0.002) (0.002) (0.002) 
          

             Income/100    0.017 0.011    0.010 0.007 
   (0.002) (0.002)    (0.002) (0.002) 
          

             Occupation     0.004     0.002 
    (0.001)     (0.001) 
          

R2 0.008 0.015 0.015 0.015  0.009 0.015 0.015 0.015 
N 6,054,117 5,249,738  6,054,117 5,249,738 

 
Notes: The sample used in this table consists of all individuals in the main sample that have at least one sibling.  Each 
regression uses the full controls from table 3 in addition to the variables included in this table. 

 
 
 
 

 
 



Table A.11. Assessing how the quality of the age at death information affects the results. 
Lifespan sibling coefficient. 

 

 Sample:  All siblings  
(reproduced from table 6)   All siblings have a death 

certificate in tree 

Statistic: Sibling 
coefficient  

Father 
coefficient   Sibling 

coefficient  
Father 

coefficient 
 
Panel A: Sister-sister    

 0.106 0.069  0.118 0.081 
 (0.001) (0.001)  (0.002) (0.002) 

N 2,402,338 3,693,559  229,196 321,367 
 
Panel B: Brother/Brother  

 0.134 0.084  0.159 0.096 
 (0.001) (0.001)  (0.002) (0.001) 

N 3,664,460 4,680,402  542,232 702,565 
  
Panel C: Sister/Brother    

 0.035 0.077  0.060 0.091 
 (0.001) (0.001)  (0.001) (0.001) 

N 5,747,644 8,183,995  659,296 899,945 
            
 
Notes: This table was created using a previous iteration of the dataset. The left two columns are copied from Table 
6. The right two columns have the same specification as the left but are restricted to a subsample that also matched 
to a death certificate record on Family Search.  
 
 

 

 

 

 

 

 

 

 

 

 

 



Figure A.0. Data Construction 
 
 

173.3  
  

Everyone born 1880-1920:  
• Ages 0-20 in the 1900 census 
• Ages 0-30 in the 1910 census 
• Ages 0-40 in the 1920 census 

 
N=173.3M person-year obs 

 

 
N = 40M person-year obs without PID 

 
 
 

 
N = 133.3M person-year obs with PID 

N = 86.6M unique individuals 
 

N = 39M 
Matched to a tree with age at death 
information (birth and death year) 

 

N = 28.7M 
Have one parent with age at death 

N = 26.1M 
Survived to age 25 

 



Figure A.1. Distribution of the age at death In the Census-Tree data 
Comparison with SSA Cohort Data 

 
 

 
Notes: These figures use our sample (derived from the FamilyTree, see text for details) and cohort life tables 
produced by the Social Security Administration (SSA), available here: 
https://www.ssa.gov/oact/NOTES/pdf_studies/study120.pdf. 



Figure A.2. Comparing survival rates in the Census-Tree data and the SSA cohort data 

 

 
Notes: These figures use our sample (derived from the Family Tree, see text for details) and cohort life tables produced by the Social Security Administration 
(SSA), available here: https://www.ssa.gov/oact/NOTES/pdf_studies/study120.pdf. Kaplan-Meier estimates are produced using the methods described here: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059453/ 
 

 
 



 
Figure A.3. Number of deaths by death year in our sample. 

Cohorts born 1880-1920 surviving to age 25. 
 

 
Notes: The figure shows the death year of individuals born 1880-1920 who survived to age 25 and who are in our 
sample (they have birth and death dates and so do their parents). The dashed lines denote 1918 and 1945, the 
deadliest years of WWI and WWII. In 1918 there was also a flu pandemic. 
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Figure A.4. Male period and cohort life expectancy trends France 1870-1920 

 
Notes: This figure uses period and cohort tables from the Human Mortality Database.  
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Figure A.5: Trends in absolute mobility, by sex and birth cohort 
Percent of children living longer than same-sex parent using alternative censoring rules  

 

 
Notes: Each dot is the fraction of children in the sample whose age at death was greater than their parent’s age at 
death.The blue lines show estimates in which both parent and child are required to survive to age 25. The red lines  
show the estimates for the alternative censoring rule in which children are required to survive to the same age as 
their parents at the time of their birth. Standard errors are included for each estimate in the figure, but are too small 
to see. 
  



Figure A.6. distribution of adult lifespan gap in Census-tree data 
a. Daughter age at death – mother age at death 

 
b. Son age at death – father age at death 

 
 

Notes: The figure shows the the age at death of the child minus the age at death of the parent, conditional on both 
parent and child surviving to age 25. Census-Tree data for cohorts born 1880-1920. 
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Figure A.7. Changes in Absolute Mobility 1880-1920 

 

 
Notes: The figures use the Census-Tree data for cohorts born 1880-1920. They show the survival curves for parents 
and children. The top panel reports the curves for fathers and sons, the bottom panel reports the curves for mothers 
and daughters.  
  



Figure A.8. Test for Linearity of the child-parent lifespan relationship, by sex 

a. Intergenerational Persistence in lifespan in levels: Child adult lifespan as a function of parent lifespan  

 
b. Intergenerational Persistence in lifespan in ranks: Child adult lifespan percentile as a function of parent adult lifespan percentile  

 
 
Notes: The top panels plot the average of the son’s lifespan in one-year bins based on the father’s lifespan, conditional on both parents and children living to age 
25. The bottom panels relate the average son’s (daughter’s) percentile in the distribution of the age at death among sons, relative to the father’s (mother’s) 
percentile. The thin blue line shows the best linear prediction; the estimated slope and its standard error for each figure is reported under “coef” inside each 
figure.  



 



Appendix A

1 Covariances from Simple Model of Lifespan

For the model of lifespan described in the paper, this appendix outlines the covariance in lifespan

between parents, parents and children, siblings, twins, and grandparents and grandchildren.

In this model the covariance between parents is given by:

Cov(Lf
ijsc−1, L

m
ijsc−1) = Cov(δGf

jsc−1 + αsc−1 + γfi + λθfSES
ic−1 + ei, δG

m
jsc−1 + αsc−1 + γmi + λθmSES

ic−1 + ei)

= δ2Cov(Gf
jsc−1, G

m
jsc−1) + V (αsc−1) + λ2Cov(θfSES

ic−1 , θmSES
ic−1 )

where the first term denotes the extent to which there is assortative mating between spouses based

on genes. The second term is the variance of the (common) environmental component. The third term

denotes the extend to which there is assortative mating between spouses based on social economic

status.1

The covariance between father and son is the given by:

Cov(Lm
ijsc−1, L

m
ijsc) = Cov( δGm

jsc−1 + αsc−1 + γmi + λθSES
ic−1 + ei,

δ
1

2
(Gf

jsc−1 +Gm
jsc−1) + ηijc + αsc + γmi + λθSES

ic + ei)

Cov(Lm
ijsc−1, L

m
ijsc) = δ2

1

2
Cov(Gm

jsc−1, G
f
jsc−1) + δ2

1

2
V (Gm

jsc−1) + Cov(αsc−1, αsc) + V (γmi ) + λ2Cov(θSES
ic−1 , θ

SES
ic )

The covariance between father and son depends on the genetic assortativeness of the parents,

the extent to which father and son share genes, the extent to which they share an environment,

the variance of the gender component, and the covariance in the social economic status component

between fathers and sons.
1Note that the strict commonality of spouses environment could be relaxed and variance of the (common) environmental

component could then represent the amount of assortative mating between spouses based on environment. While
potentially important in many contexts, this simplification does not change the main implications.
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Similarly, the covariance between mother and daughter is given by:

Cov(Lf
ijsc−1, L

f
ijsc) = Cov( δGf
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δ
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2
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The covariance between father and daughter is the given by:

Cov(Lm
ijsc−1, L

f
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The covariance between father and daughter is the same as the covariance between father and son

except there is no term for the shared gender component. Similarly, the covariance between mother

and son is the same as the covariance between mother and daughter except there is no term for the

shared gender component.

In addition to the covariances between parents and children we can also express the covariances

between different types of siblings. With out loss of generality, let i = 1 for one sibling and let i = 2

for the another sibling.

The covariance between male siblings is given by:
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m
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The covariance between female siblings is given by:

Cov(Lf
1jsc, L

f
2jsc) = Cov( δ

1

2
(Gf

jsc−1 +Gm
jsc−1) + η1jc + αsc + γfi + λθSES

ic + e1,

δ
1

2
(Gf

jsc−1 +Gm
jsc−1) + η2jc + αsc + γfi + λθSES

ic + e2)

2
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The covariance between opposite gender siblings is given by:
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Note that the only difference between male siblings, female siblings, and opposite gender siblings

is whether V (γmi ), V (γfi ), or no variance in the gender component is included, respectively.

The covariance between male identical twins is given by:
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The covariance between female identical twins is given by:
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Note that the covariances for twins are the same as those for the same gender siblings except that

they also have a term for the variance in the additional shared genetic component.
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The covariance between grandfather and grandson is given by:
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jsc−1 + ηfmijc +Gmm

jsc−1 + ηmm
ijc )

+ δ
1

2
(ηfijc+1 + ηmijc+1) + αsc+1 + γmi + λθSES

ic+1 + ei)

Cov(Lm
ijsc−1, L

m
ijsc+1) = δ2

1

4
V (Gmm

jsc−1) + δ2
1

4
Cov(Gmm

jsc−1, G
mf
jsc−1) + δ2

1

4
Cov(Gmm

jsc−1, G
ff
jsc−1)

+ δ2
1

4
Cov(Gmm

jsc−1, G
fm
jsc−1) + Cov(αsc−1, αsc+1) + V (γmi ) + λ2Cov(θSES

ic−1 , θ
SES
ic+1 )

Note, the superscripts mm, mf, fm, and ff represent father’s father (i.e. the male male genealogical

line), father’s mother, mother’s father, and mother’s mother, respectively. Each of covariances for the

other three grandparent-grandchild combinations are analogous to this results, however, with the

variance of the gender component (V (γmi ) or V (γfi )) omitted for the cross-gender covariances.

2 Regression Coefficient of Son’s Lifespan on Father’s Lifespan

The regression coefficient of son’s lifespan on father’s lifespan, denoted by βL, is given by:

βL =
δ2 12Cov

(
Gf

jsc−1, G
m
jsc−1

)
+ δ2 12Var(Gm

jsc−1) + Cov(αsc, αsc−1) + λ2Cov(θSES
ic , θSES

ic−1 ) + Var(γmi )

Var(Lm
ijsc−1)

Suppose now that the intergenerational transmission of SES is given by:

θSES
ic = βSESθ

SES
ic−1 + εSES

where βSES is the intergenerational SES transmission coefficient. Then the regression coefficient of

son’s lifespan on father’s lifespan, denoted by βL, is given by:

βL =
δ2 12Cov

(
Gf

jsc−1, G
m
jsc−1

)
+ δ2 12Var(Gm

jsc−1) + Cov(αsc, αsc−1) + λ2βSESVar(θSES
ic−1 ) + Var(γmi )

Var(Lm
ijsc−1)
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3 Covariance of Indirect Utility Vc and Vc−1

To keep expressions as simple as possible, we consider the case in which the indirect utility of

generation c is given by:

Vc = Vc(Y, S) = rankc × LEc

The covariance between the indirect utilities of generations c and c− 1 is:

Cov(Vc, Vc−1) = Cov(rankcLEc, rankc−1LEc−1)

Applying the product rule of covariance, we obtain:

= E(rankc)E(rankc−1)Cov(LEc, LEc−1) + E(rankc)E(LEc−1)Cov(LEc, rankc−1)

+E(LEc)E(rankc−1)Cov(rankc, LEc−1) + E(LEc)E(LEc−1)Cov(rankc, rankc−1)

+Cov(rankc, rankc−1)Cov(LEc, LEc−1) + Cov(rankc, LEc−1)Cov(LEc, rankc−1)

This expression shows that even in this simplest case, the lifetime covariances are not a simple

linear combination of the lifespan and rank covariances. They depend also on, for example, the

covariance between the parent’s SES and the child’s lifespan.
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